
- p. 1/335

Chapter 1 – Looking at Data –
Distributions
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What Statistics is all about

� Get information from data (numbers, facts)
� Draw pictures and calculate numbers that describe the data

� can make a complicated list of numbers look very simple

� Use data to make decisions and conclusions about the
world.
� how do we know that a new drug actually works?
� how do housing costs change over time?
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Data

Car magazine collected information about (38) models, like
this:

Car MPG Weight Cylinders Horsepower Country

Buick Estate Wagon 16.9 4.360 8 155 U.S.

VW Rabbit 31.9 1.925 4 71 Germany

Mercury Zephyr 20.8 3.070 6 85 U.S.

Fiat Strada 37.3 2.130 4 69 Italy

Mazda GLC 34.1 1.975 4 65 Japan

Saab 99 GLE 21.6 2.795 4 115 Sweden

BMW 320i 21.5 2.600 4 110 Germany

� each row describes car (individual)

� each column describes feature of car (variable)



- p. 4/335

Kinds of variables (chapter 1 intro)

Variables can be:
� quantitative: measured or counted (mpg, cylinders)
� categorical: name or group category (country)
Distribution of variable: list of values, how often each value
occurs.
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Data set

is: a number of variables for each of a number of individuals,
plus a “story” of:
� why data were collected
� who is in there (which individuals)
� what variables measured and how
Can look at variables one at a time, or several together.
Look first at some graphs, then worry later about how to draw
them.
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Displaying distributions with graphs (§1.1)

Bar chart for categorical variables:
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Bar chart comments

� Shows cars from each country: most from US, fewest from
France, Italy.

� Very difficult to see from original list of numbers.
� (In general: how many individuals in each category.)
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Pie chart
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Graphs for quantitative variables

For quantitative variables, can use histogram.
Example: miles per gallon.
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Learning from histogram

� Cars divide into 2 groups: those with MPG around 20, those
with MPG around 30.

� Again, hard to see without picture.
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An alternative to histogram: stemplot

MPGs, rounded:
28 31 21 37 16 32 34 34
22 32 29 27 19 27 18 21
22 27 16 22 34 30 17 17
17 20 19 19 31 27 35
22 32 18 17 18 28 30

Make list of tens digits, write units on correct row (first 3 cars)
1 |
2 | 8 1
3 | 1

Continue until all cars done:
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Stemplot continued

1 | 6 9 8 6 7 7 7 9 9 8 7 8
2 | 8 1 2 7 9 7 7 1 2 7 2 0 7 2 8
3 | 1 7 2 4 4 2 4 0 1 5 2 0

Optional last step: sort the leaves, lowest to highest, on each
line:
1 | 6 6 7 7 7 7 8 8 8 9 9 9
2 | 0 1 1 2 2 2 2 7 7 7 7 7 8 8 9
3 | 0 0 1 1 2 2 2 4 4 4 5 7

� Advantages: easy to do by hand; easy to see lowest (16)
and highest (37) values

� Disadvantage (here): hard to see shape, compared to
histogram: too few “stems”.
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Choosing stems

� Have to pick what to use as stems. Might be 10’s, so leaves
are units (as here). Might be units, so leaves are first
decimal place (0.1). Depends on data.

� Example: guinea pig survival times (Table 1.8): 73, 102,
121, 137, 214, 403, 598 (plus a bunch of other values). Try
using 100s as stems, 10s as leaves, discard last digit:
0 | 7
1 | 0 2 3
2 | 1
3 |
4 | 0
5 | 9

� Seems to give about right number of stems.
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Splitting stems

Recall MPG stemplot:
1 | 6 6 7 7 7 7 8 8 8 9 9 9
2 | 0 1 1 2 2 2 2 7 7 7 7 7 8 8 9
3 | 0 0 1 1 2 2 2 4 4 4 5 7

To get more lines on a stemplot (and better picture of shape of
distribution), split each line into two parts: “leaves” 0–4 and
leaves 5–9. For MPGs this gives:
1 | 6 6 7 7 7 7 8 8 8 9 9 9
2 | 0 1 1 2 2 2 2
2 | 7 7 7 7 8 8 9
3 | 0 0 1 1 2 2 2 4 4 4
3 | 5 7

Like the histogram, shows many cars with MPGs in high teens,
and in low 30s. Look carefully also to see “gap” between 22
and 27.
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Drawing stemplots

� Choose digit to be stem (eg. tens digit). Next digit is leaf,
and discard any digits beyond that.

� Separate each value (in your head) into stem and leaf.
� Write stems in column, smallest at top, vertical line to right.
� Write each leaf in row to right of its stem.
� (optional) arrange leaves in increasing order.
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Fixing up a stemplot

Aim of stemplot is to show right number of stems to see shape
of distribution. Stemplot as drawn sometimes seems to have
wrong number of stems.
Also, sometimes not clear which digit should be stem, so pick
one, draw stemplot and then re-draw if necessary:
� If too many stems, choose next digit to left (eg. 100s digit) to

be new stem, next digit to be leaf, and trim one remaining
digits from right of values.

� If too few stems, split in half.
� Idea: want to show shape of distribution.
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Shape, centre and spread: the cereal data

Different data: information on 77 kinds of breakfast cereal
(individuals), lots of variables such as:
� calories per serving
� protein per serving
� fat per serving
� sodium per serving
� fibre per serving
� potassium per serving
� shelf on which found at supermarket (1, 2, 3)
� serving size (cups)
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Histogram of calories per serving



- p. 19/335

What histogram shows

Most cereals have around 110 calories/serving. Only a very
few cereals have a lot more or fewer calories.
That is, centre of distribution of values around 110, spread
fairly small. Also, shape fairly symmetric: picture goes “up”
same way as “down”.
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Compare potassium per serving
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Discussion

Most cereals have 100 mg or less of potassium (difficult to say
where exact centre is), but there is a lot of spread – from no
potassium to over 300 mg.
Shape not symmetric: more cereals with unusually high
potassium than with unusually low. Up quickly, down slowly.
Called skewed to right.
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Shape, centre and spread with stemplots

Calorie content (rounded to nearest 10 in data)
Stem-and-leaf of calories N = 77

Leaf Unit = 1.0

3 5 000

3 6

5 7 00

6 8 0

13 9 0000000

30 10 00000000000000000

(29) 11 00000000000000000000000000000

18 12 0000000000

8 13 00

6 14 000

3 15 00

1 16 0
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Stemplot of potassium

Stem-and-leaf of potassiu N = 77; Leaf Unit = 10

3 0 001

17 0 22222333333333

29 0 444444445555

34 0 66667

(11) 0 88999999999

32 1 00000111111

21 1 222233

15 1 44

13 1 6677

9 1 99

7 2 0

6 2 3

5 2 4

4 2 6

3 2 8

2 3

2 3 23

0 3
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Boxplots (from §1.2)

Boxplots designed to show shape, centre, spread (when
“centre” makes sense). For potassium per serving:
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Parts of boxplot

� rectangle with line across it. Line marks “centre”, top/bottom
of rectangle show middle 50% of data. Typical potassium
level just under 100, middle 50% between 40 and 120.

� vertical lines (“whiskers”) above/below rectangle show extent
of “plausible” values (0 to 240).

� * marks individual “unusual” values (4, above 260).
Heights of rectangle and vertical lines show spread.
Comparative lengths of whiskers above & below show
symmetry/skewness (long upper whisker – skewed to right).
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Boxplot for calorie content

Centre around 100, compressed box & whiskers show little
spread.
Whiskers same length – symmetric shape. Many unusual
values.
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Introduction to Minitab

Minitab is software designed especially for doing Statistics.
Comes bundled with textbook (with manual), also can be
accessed in Windows labs on campus.
We use Minitab in this course because:
� it is not difficult to learn (in our opinion)
� it has been well tested over the years of its existence (you

can trust its calculations)
� it does all the statistical analyses you are likely to need.
Spreadsheet software (like Excel) is not to be trusted for
Statistics!
Startup: Start button, Programs, Minitab.
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Startup
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The Minitab display

� Bottom window for data (variables in columns and
individuals in rows). Each variable can have a name (use
boxes directly below C1, C2), above 1st row.

� Results of calculations appear in the top window (called the
Session window).

� The menus at the top let you reorganize your data set
(Manip), do calculations with it (Calc and Stat) and draw
pictures (Graph).
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Getting data in

� File, Open Worksheet:
� Make sure you’re looking in the right place!
� Textbook data sets: find on disk in textbook (Data Sets,

PC Data Sets, Minitab). Search for “Minitab Portable”
files (.mtp).

� Class data sets: save from webpage to your desktop,
then open in Minitab.

� Type in yourself: Worksheet window works like spreadsheet.
Space above rows used for column name.

Minitab allows multiple worksheets. Click on the one to use, or
select from Window menu.
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Drawing graphs

Use Graph menu (duh!), select type of graph. (Examples
below for car data.)
� Bar graph: Graph, Bar chart. Click OK. Select country

(double-click in left window, appears in right). Click OK.
� Histogram: Graph, Histogram. Choose Simple, click OK.

Select MPG (double-click). Click OK.
� Stemplot: Graph, Stem and Leaf, select MPG. Appears in

Session window.
� Boxplot: Graph, Boxplot. Choose Simple, click OK. Select

variable, click OK.
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Describing distributions with numbers (§1.2)

Picture often says much about distribution, but to convince
others, may need numbers to describe.
Three major features of distribution:
� shape (picture)
� centre (number: mean, median)
� spread (number: IQR, SD)
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Centre: the mean

Centre says what “typical”, “average” value is.
Mean: add up values, divide by how many there are.
Example: running back on football team carries ball 5, 3, 11, 1
and 4 yards. Mean distance carried is

5 + 3 + 11 + 1 + 4

5
= 4.8 yards.

Cereal calorie content: from histogram, centre around 110.
The mean for all 77 cereals is 106.88.
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Centre: the median

Median: arrange values in order, pick out middle one.
� Football running back: in order, 1, 3, 4, 5, 11. Median is 4

yards (compare mean 4.8 yards).
� Cereal calorie content: median is 110 calories (compare

mean 106.88).
If even number of data values, no single middle one. Use
mean of middle 2. Example: median of 10, 11, 14, 20 is
(11 + 14)/2 = 12.5.
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Mean vs. median

Both measuring centre: why have both?
When distribution shape symmetric, mean and median close
together. But if distribution skewed, or if unusually high or low
values, can be quite different.
Running back: mean (4.8) bigger than median (4) because of
one unusually long run (11 yards). Affects mean (adds to total)
but only affects median by being bigger than 4.
So use:
� mean if shape close to symmetric,
� median if shape skewed.
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Spread: quartiles and interquartile range

Median splits data values in half (half above median, half
below).
Quartiles: split data values 1

4
− 3

4
. (Quarter below or quarter

above).
Tiny example: 10, 11, 13, 15, 18, 19, 21.
� 7 values, median is 15. Split values into lower half and upper

half; if odd number of values, don’t use median.
� So: lower half 10, 11, 13; upper half 18, 19, 21.
� Median of lower half is 1st quartile: here Q1 = 11. Median of

upper half is 3rd quartile, Q3 = 19.
Warning: other textbooks (and Minitab) have different ways of
getting quartiles, but difference is not important.
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Interquartile range

� Cereal potassium content: 1st quartile is 40 (quarter of
cereals have less potassium than this, three-quarters more).
3rd quartile is 120 (three-quarters less, one quarter more).

� Interquartile range (IQR): difference between 3rd quartile
and 1st quartile.

� For potassium content, is 120 − 40 = 80.
� Larger IQR means data more spread out. (If all values

same, IQR would be 0.)
� Compare calorie content of cereals. 1st quartile 100, 3rd

quartile 110, IQR 110 − 100 = 10.
� IQR for calorie content much smaller than for potassium,

because values much less spread out.
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Numerical descriptions in Minitab

Use Stat menu: Stat, Basic Statistics, Display Descriptive
Statistics. Select (double-click) variables to display, eg. calorie
and potassium content of cereals (can be more than one).
Result:
Descriptive Statistics: calories, potassium

Variable N N* Mean SE Mean StDev Minimum

calories 77 0 106.88 2.22 19.48 50.00

potassium 77 0 96.08 8.12 71.29 -1.00

Variable Q1 Median Q3 Maximum

calories 100.00 110.00 110.00 160.00

potassium 40.00 90.00 120.00 330.00

Calculate IQR by hand as Q3 − Q1.
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Boxplot revisited: outliers

� IQR measures spread of middle 50% of data. Also yardstick
to decide whether value unusual compared to rest: an
outlier.

� Criterion: more than 1.5× IQR above 3rd quartile, or more
than 1.5× IQR below 1st quartile considered outlier.
(Example below.)

� Boxplot (eg. for potassium): centre line at median, top and
bottom of box at 1st and 3rd quartiles. Whiskers from box to
most distant non-outlier; outliers plotted individually.
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Example

Check calculation for potassium: median 90, 1st quartile (Q1)
40, 3rd quartile (Q3) 120.

IQR = 120 − 40 = 80; 1.5 × IQR = (1.5)(80) = 120.

Therefore anything below 40 − 120 = −80 is an outlier, also
anything above 120 + 120 = 240.
In data: smallest value 0 (no outliers at low end). 4 values
above 240, one exactly equal. 240 is not outlier; is highest
non-outlier, so extend whisker to 240, plot higher values
individually.
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Review boxplot
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Boxplots for comparison

� Boxplots useful for comparison – plot side by side.
� Cars: More cylinders means worse gas mileage? Boxplot for

cars with 4, 6, . . . cylinders.
� Minitab: choose With Groups instead of Simple. Select MPG

as Graph Variable, click on Categorical Variable box and
select Cylinders there.
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MPG by cylinders boxplot
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Standard deviation

Median, IQR use only middle of distribution. Mean uses all
values; spread that does same?
Standard deviation (SD) based on how far away from mean
each value is. If many values far from mean (or some very far),
SD large. If all values close, SD small.
Value minus mean + if value above mean, − if value below. So
calculation squares each value first (makes +), then takes
square root at end. (Details in section 1.2 of text.)
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SD and IQR

Examples from cereal data:
Variable IQR SD

Calories 10 19.48
Potassium 80 71.29

IQR, SD numbers not directly comparable, but pattern same:
calories less spread-out than potassium content.
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SD vs. IQR

� SD, like mean, uses all data values. So can be badly
affected by outliers or skewed shape.

� So use SD when would use mean: shape symmetric, no
outliers. Otherwise use median and IQR.
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Changing units of measurement

Could measure eg. heights in feet or metres, temperatures in
Celsius or Fahrenheit. Conclusions shouldn’t be affected by
choice.
Common kinds of change:
� multiplying each value by the same number b

� adding the same number a to each value
Changes numbers on plots, but no effect on shape.
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Effect of changes of unit

Effects of these changes on quantitative descriptions
predictable:
� multiplying by b multiplies mean, median, SD and IQR by b

� adding a adds a to mean and median, but leaves SD and
IQR unchanged.

Makes sense: adding a number changes centre, but “shifts
distribution along” without changing its spread.
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The normal distributions (§1.3)

Histogram has fairly symmetric shape. Smooth curve
superimposed passes (more or less) through top of histogram
bars.
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Normal density function

Curve called a normal density function. Might guess that
histogram looks jagged because of randomness of data;
“underlying” picture is smooth.
Normal density function is mathematical model of process
producing data.
If histogram with bars matching normal density function, data
said to have normal distribution.
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Normal — mean and SD

Normal distribution described completely by mean and
standard deviation.
Notation with Greek letters: mean µ (mu), SD σ (sigma).
Picture: µ = 10, σ = 3.
Mean at peak of curve (obvious “centre”).
σ distance from peak to “shoulder” (same both sides).
If σ smaller, curve is more peaked; if σ larger, curve lower and
flatter.
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Why normal distribution is useful

� distribution of real data sometimes
� distribution of chance outcomes
� central to statistical inference (drawing conclusions from

data)
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68–95–99.7

On any normal distribution (whatever mean and SD):
� 68% of values fall within σ of the mean (between µ − σ and

µ + σ)
� 95% of values fall within 2σ of the mean (between µ − 2σ

and µ + 2σ)
� 99.7% of values fall within 3σ of the mean (between µ − 3σ

and µ + 3σ)
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Example 1

In a normal distribution with mean 10 and SD 3:
� 68% of values between 10 − 3 = 7 and 10 + 3 = 13.
� 95% of values between 10 − (2)(3) = 4 and

10 + (2)(3) = 16.
� What % of values between 1 and 19? 1 = 10 − (3)(3) and

19 = 10 + (3)(3), so 99.7% of them.
� What % of values between 10 and 13? 68% of values

between 7 and 13, normal curve symmetric, so half of that:
34%. (Draw picture.)

� What % of values below 4? 95% between 4 and 16, so 5%
either below 4 or above 16. Symmetric, so half each end:
2.5%.
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Example 2: Cereal sodium levels

Cereal data: sodium content levels look normal-distribution-ish:
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Rule for cereal sodium levels

Try rule. Mean is 180.8, SD 64.0, 68 values. (To find out how
many observations between two values, go to data set and
count them.)

Low High Count Actual % Rule

116.8 244.8 50 74% 68%
52.8 308.8 64 94% 95%

–11.2 372.8 68 100% 99.7%
Pretty close!
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Standardizing and z-scores

� Can find out how unusual a value from a normal distribution
is.

� Example: Cheerios have 290 mg sodium/serving. Subtract
mean, divide SD to get

z =
290 − 180.8

64.0
= 1.71.

Higher than average sodium; in fact, notably higher relative
to SD.

� Process called standardizing; result called z-score.
� (Fact: if normal distribution correct, only 4% of cereals

higher in sodium.)
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Normal distribution calculations

� No nice formula, but can be done with Table A in text.
� Example 1.27 in text: SAT scores have normal distribution,

mean 1026, SD 209. What proportion of students have
scores 820 or bigger?

� Steps: value to z-score to proportion.
� Value here 820. Then

z =
820 − 1026

209
= −0.99.

� Look up −0.99 in Table A: 0.1611. Table gives you “less”, so
proportion 0.1611 of students have SAT scores less than
820, and proportion 1 − 0.1611 = 0.8389 have scores greater
than 820.
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Proportion between

To get the proportion between two values, turn both values into
z-scores, look them both up in Table A, then take difference.
� In previous example, proportion of students scoring between

720 and 820?
� 820 corresponds to z = −0.99 and proportion 0.1611. For

720,

z =
720 − 1026

209
= −1.46.

In Table A, z = −1.46 goes with proportion 0.0721.
� So proportion of students scoring between 720 and 820 is

0.1611 − 0.0721 = 0.0890.
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Getting value from proportion

If you have a proportion and you want to get a value, reverse
above procedure.
� What SAT score do 10% (0.1000) of students score less

than?
� Use Table A backwards first: look up 0.1000 in body of table

to get z = −1.28 (approx).
� Then “unstandardize” to get SAT score of

µ + zσ = 1026 + (−1.28)(209) = 758 (rounding).
� 10% of students will score less than 758, and the other 90%

will score more.
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Normal quantile plot

� To do any calculations with a normal distribution, need to
know that shape is correct.

� Example: cereal data, potassium content values had
skewed distribution (so normal no good).

� If normal dist. correct, normal quantile plot should show
straight line. If it doesn’t, normal dist. no good:
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Normal quantile plot for potassium

Curve indicates a skewed distribution.
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Normal quantile plot for sodium

Pattern of dots wiggles, but follows the central line well.
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Chapter 2: Looking at Data –
Relationships
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Introduction

Returning to car data: cars usually cheap to run or powerful
but not both. So might expect eg. heavier car to be more
powerful, so less gas-efficient – variables “weight” and “MPG”
associated.
� New idea: so far, consider variables one at a time, but now

have to consider 2 variables together.
� Relationships between 2 variables might also be affected by

other variables – potential for confusion.
� Start with quantitative variables. (Look at categorical

variables in §2.5.)
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Scatterplots (§2.1)

� Good graphical display of association for quantitative
variables is scatterplot. For each individual, plot values for
the two variables on an x-y graph.

� Car data: MPG and weight.
� Get a scatterplot in Minitab from Graph, Plot then selecting

MPG, weight by double-clicking.
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Cars: MPG vs. weight scatterplot

Heavier cars generally have worse MPG (though exceptions).
Called a negative association.
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Cereals: potassium vs. fibre

Cereals with more potassium generally have more fibre.
Positive association.
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Cereals: calories vs. fat

As fat increases, calories increase for a while, but then levels
off. Non-linear association.
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Other points

� Statistical associations are general tendencies, not ironclad
rules. Almost always exceptions to trend. (What works “on
average”.)

� Many studies have one variable that is outcome (final result).
Eg. MPG is result of design, construction and driving of car.
Called response variable. Other variables called
explanatory variables: “explain” how response changes.

� In a scatterplot, put response variable on vertical (y) axis.
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Summary

� With two related variables, need to look at both at once.
� Scatterplot is good display for quantitative variables.
� In scatterplot, can have:

� positive association (big on one variable means big on
other)

� negative association (big on one is small on other)
� non-linear (curved) association
� no apparent association

� Statistical associations usually general trend with individual
exceptions.
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Correlation (§2.2)

� First step in assessing 2-variable relationship is scatterplot.
� Can see if is association, and what kind (straight line, curve).
� If association looks like straight line, describe strength of

relationship using number called correlation.
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Properties of correlation

� Number between −1 and 1. 1 means perfectly straight
upward trend; −1 means perfectly straight downward trend,
0 means no trend at all.

� Measures how “predictable” one variable is if you know
other.

� Only works for straight-line associations (misleading
otherwise).

� Has no units of measurement (pure number), so same for
any measurement units of variables (km per litre instead of
MPG).

� Based on mean and SD, so can be badly affected by outliers.
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Examples of correlation

In Minitab, Stat, Basic Statistics, Correlation. Select 2 (or
more) variables, click OK.
For fibre and potassium in cereals, high potassium usually
meant high fibre:
Correlation of fiber and potassium = 0.903
Correlation high and positive. Fibre predictable from
potassium. (Compare scatterplot.)
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Cars: weight and MPG again

Cars: high weight meant low MPG. Correlation shows this too:
Correlation of Weight and MPG = -0.903

Identical numerical values of 0.903 coincidence!
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Cereals: Sodium and sugars

Correlation of sodium and sugars = 0.101

Almost no association here at all.
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A curved association

Pearson correlation of y and x = 0.384

Association is non-linear, but more up than down, so
correlation is small but positive. (What if curve is less curvy?)
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Summary

� Correlation is number summarizing extent and kind of
relationship.

� Correlation +1 shows perfect positive association.
� Correlation −1 shows perfect negative association.
� Correlation 0 shows no (straight-line) association.
� Doesn’t depend on units of measurement.
� Only intended for straight-line relationships (misleading for

curves).
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Regression (§2.3)

Correlation: “is there a straight-line association?”
Regression: “what is that straight line?”
When line known, can use it to predict value of response
variable from a value of explanatory variable – given a car’s
weight, can predict its MPG.
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Straight lines in mathematics

Mathematical equation for straight line association between x
and y is:

y = a + bx

a is value of y when x = 0, called intercept.
b says how much y changes when x increases by 1, called
slope.
So choosing a line means choosing its intercept and slope.
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Choosing a line “through” the data

Line A all wrong; B not steep enough; C about right.
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Least squares

Want line going “closest” to data with smallest “error”.

Observed: x = 5, y = 35. But line predicts ŷ = 25 when x = 5,
so error in using line is e = y − ŷ = 35 − 25 = 10 (height of
dashed line).
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Residuals and least squares

� Error e = y − ŷ called residual.
� Each individual has x, y, predicted ŷ; for any particular line,

work out residuals. Residual + if observed > predicted, − if
<.

� Can’t combine residuals by adding up (always get 0), but
can square first to make positive and then add up.

� For a good line, all residuals small, sum of squared residuals
small. For a bad line, some residuals large, sum of squared
residuals large.

� Choose line with smallest sum of squared residuals. Called
least squares regression line.
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Regression line for MPG and weight

Return to MPG and weight for cars. Correlation was negative:
larger weight usually means smaller MPG.
� Regression line in Minitab: Stat, Regression, Regression.

Response is MPG (trying to predict), Predictor is weight
(predicting MPG from it). Click OK:
The regression equation is

MPG = 48.7 - 8.36 Weight

plus other stuff.

� Each increase in weight by 1 ton associated with decrease
of 8 MPG.

� Predicted MPG for car with weight 2.5 tons is

ŷ = 48.7 − 8.36(2.5) = 27.8.
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Finding regression equation

To calculate, need: means of x and y data (x̄, ȳ), SDs of x and
y (sx, sy), correlation (r). Then regression line has equation

ŷ = b0 + b1x

with

b1 = r
sy

sx

b0 = ȳ − b1 x̄
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Calculations for weight and MPG

For weight (x), MPG (y),

x̄ = 2.863,

ȳ = 24.76,

sx = 0.707,

sy = 6.55,

r = −0.903,

so

slope b1 = (−0.903)(6.55/0.707) = −8.365;

Intercept b0 = 24.76 − (−8.365)(2.863) = 48.71.

Agrees with Minitab to within rounding.
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R-squared

� Square of correlation, r2, is fraction of variation in y
explained by regression of y on x.

� Above, r = −0.903, so r2 = (−0.903)2 = 0.815 = 81.5%.

� r2 = 0 means x tells you nothing about y.

� r2 = 100% means that y only varies because it depends on
x.

� Higher r2 better.
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Scatterplot with regression line
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Extrapolation

� What happens if we predict MPG for car weight 6 tons?

ŷ = 48.7 − 8.36(6) = −1.46

but MPG cannot be negative!
� In data, have no cars as heavy as 6 tons, so are taking on

faith that regression line continues to apply – bad idea!
� For these data, MPG seems to decrease as weight

increases, but not so fast for bigger weight.
� Using regression line to predict beyond data should not be

done.
� Sometimes can see that prediction is nonsense, but often

not.
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A second look at fitted line plot

� Line provides simple description of data.
� But maybe too simple for these data. Cars weight around 3

tons below line (worse MPG than predicted by line), lightest
and heaviest cars above line (better MPG than predicted).

� Maybe a curve would be better, but is there a good way to
tell?

� Think about residuals y − ŷ for each observation.
� Plot residuals against explanatory variable.
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Residual plot (§2.4) for MPG-weight

Clear down-and-up pattern.
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Looking for lack of pattern

� Minitab: in Regression dialogue, click Graphs, in “Residuals
vs. variables” box select explanatory (weight).

� Aim: all association between variables summarized in
regression. Should be nothing left over, so residual plot
should have no pattern.

� If pattern, something wrong:
� curved pattern (above) shows curved not linear

association
� fan-out pattern (next page) shows increasing variation

about line as x increases – predictions more precise for
smaller x.
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Fan-out pattern (Example 2.20)

Predictions less accurate when x larger. Bad – regression
should be equally good all along.
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A good residual plot (Example 2.19)

No pattern. Ask: can I predict residual from x? (Here: no.)
Beware of looking too hard for pattern.



- p. 95/335

Outliers and influential points (example 2.21)

Diabetics manage blood sugar: measure FPG themselves,
HbA measured in doctor’s office.

Observations 15 and 18 outliers. r2 = 23.2%.
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Effects of removing outliers

Remove outlier r2 regression

23.2% ŷ = 66.4 + 10.4x

15 y 32.3% ŷ = 69.5 + 8.52x

18 x 14.7% ŷ = 52.3 + 12.1x

� Regression line and r2 change in both cases.
� Obs. #15 off trend, so removing it improves correlation.
� Obs. #18 on trend, but far away from other data. Removing it

worsens correlation.
� Obs. #18 “drags regression towards itself” by having unusual

x, so when removed, regression free to change.
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Lurking variables

If important variable missed from regression, can be misled.
Predicting number of students in elementary university math
courses (y) from total number of 1st years (x).
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Predicting math students from 1st years

Upward trend (correlation 0.831).
Regression line:
The regression equation is

y = 2493 + 1.07 x

Fit reasonably good, but plot line with years:
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Lurking variable “year”

1st 5 years all below line, last 3 all above. Plot residuals
against year to show more clearly. (Can plot residuals against
anything.)
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Plot of residuals against year

Change in 1998: a dept required another math course.
Should not use pre-1998 data to estimate future enrollment.
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Summary

� Correlation: does a straight line describe data?
� Regression: which straight line describes data?
� Choose line through data by least squares idea.
� Intercept is y when x = 0; slope is increase in y going with x

increase of 1.
� Look at residuals to decide whether regression line useful.
� Beware of lurking variables that can distort apparent

relationship.
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Two-way tables (§2.5)

� Suppose you have two categorical variables. How do you
assess association then?

� Example: students, age and status (full/part time).
Summarize in two-way table:

Status
Age Full-time Part-time

up to 24 8626 1553
25 and over 2465 3744

� 8626 students are aged 24 or less and are full-time.
� Association between age and status? Eg. are older students

more likely to be part-time? Hard to answer because more
younger students overall.

� Key to understanding: calculating proportions, because not
affected by how many (students in each category).
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Joint distribution

� Total of 8626 + 1553 + 2465 + 3744 = 16388 students.
� Divide each entry by this grand total, eg.

8626/16388 = 0.526. Called the joint distribution, gives
proportions in each category combination:

Status
Age Full-time Part-time

up to 24 0.526 0.095
25 and over 0.150 0.228

� Proportions add up to 1 (to within rounding).
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Marginal distributions

� What proportion of students fall into each age category?
Add them up.
� Up to 24: 0.526 + 0.095 = 0.621.
� 25 and over: 0.150 + 0.228 = 0.378.

� What proportion of students fall into each status category?
Add them up.
� Full-time: 0.526 + 0.150 = 0.676
� Part-time: 0.095 + 0.228 = 0.323.

� These called marginal distributions. Overall, majority of
students are younger (rather than older) and majority are
full-time (rather than part-time). Add marginal proportions to
table:

Status
Age Full-time Part-time Total

up to 24 0.526 0.095 0.621
25 and over 0.150 0.228 0.378

Total 0.676 0.323 1



- p. 105/335

Conditional distributions

� Out of younger students, what proportion full-time or
part-time? Divide by marginal total (0.621) to get
� full-time: 0.526/0.621 = 0.847
� part-time: 0.095/0.621 = 0.153
� younger students very likely to be full-time.

� Out of older students, what proportion full-time or part-time?
Divide by their marginal total (0.378):
� full-time: 0.150/0.378 = 0.397
� part-time: 0.228/0.378 = 0.603
� older students more likely to be part-time.

� These called conditional distributions because have
condition attached: “if student is younger, how likely is that
student to be full-time?”

� If we know age of student, can make guess at their status,
because conditional distributions different. Thus age and
status associated: tell by looking at conditional distributions.
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Goodman and Kruskal’s lambda (not in text)

Status
Age Full-time Part-time Total

up to 24 0.526 0.095 0.621
25 and over 0.150 0.228 0.378

Total 0.676 0.323 1

Age Guessed status Proportion of errors

unknown full-time 0.323
up to 24 full-time 0.095

25 and over part-time 0.150
� Proportional reduction in error from knowing age is:

λ =
0.323 − 0.245

0.323
= 0.241.

� Between 0 and 1. 0 if knowing x (age) of no help in
predicting y (status); 1 means if knowing x means no
mistakes in predicting y.
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Simpson’s paradox

� (Example like Example 2.36 in text)
� Airline business competitive: airlines compete on price,

service, punctuality.
� Counts of flights on time, delayed at 5 different airports for 2

different airlines (June 1991):
Alaska Airlines America West

On time delayed On time delayed

Los Angeles 497 62 694 117
Phoenix 221 12 4840 415
San Diego 212 20 383 65
San Francisco 503 102 320 129
Seattle 1841 305 201 61

Total 3274 501 6438 787

� Hard to make sense.
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Percentages

� Calculate percentages. Overall, Alaska had
3274 + 501 = 3775 flights, 501 delayed, 13.3%. America
West: 6438 + 787 = 7225 flights, 787 delayed, 10.9%.
America West more punctual overall.

� Now calculate %’s delayed by airport and airline:

Alaska Airlines America West

Los Angeles 11.1 14.4

Phoenix 5.2 7.9

San Diego 8.6 14.5

San Francisco 16.9 28.7

Seattle 14.2 23.2

Total 13.3 10.9

� America West better overall but worse at every single airport!
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Simpson’s paradox

� Seems impossible, but numbers all correct. Called
Simpson’s paradox.

� Airports vary in % delays. Phoenix very low, San Francisco,
Seattle high. Go back to original numbers: America West
flies mostly into Phoenix, where easy to be on time; Alaska
flies mostly into Seattle, where hard to be on time.

� General principle: beware of comparing percentages for
summarized data. Only fair comparison here is airport by
airport.

� Another way to say it: punctuality depends on airline and
airport, so to summarize by airline only is misleading.
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Correlation does not imply causation (§2.6)

In science, find out how world works: want to know that
changes in one variable cause changes in another.
But correlation and regression only show association: that the
two variables change together. Does not show whether either
one causes the other.
High correlation can be caused by lurking variable. Example:
for countries, measure TV sets per person and average life
expectancy.
High positive correlation, but TV ownership not cause of long
life. Cause for both variables is standard of living.
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Establishing causation

Science: do experiment in which other lurking variables
controlled (in lab). Gives most convincing evidence of cause
and effect.
But in real world, impossible to experiment. To see whether
smoking causes lung cancer, would have to choose 2 similar
groups of people, make 1 group smoke, measure lung cancer
rates. Not ethical!
How to convince others of cause and effect without
experiment?
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Evidence for cause and effect

� Strong association (smokers suffer more from lung cancer
than others)

� Consistent association (many different studies get same
result)

� Larger effect with larger exposure (heavier smokers get
more lung cancer)

� Cause before effect (lung cancer comes after starting
smoking)

� Cause is plausible (experiments on animals show cigarette
smoke causes cancer).
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Summary

Correlation cannot prove that one variable is cause of another,
but if:
� association strong and consistent
� larger effect associated with larger value of explanatory

variable
� supposed cause comes before effect and is scientifically

plausible
then have convincing evidence of cause.
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Chapter 3: Producing data —
Finding out what we want to know
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What can we learn?

� So far: have data, asked What do we see?
� Use graphs, numbers to describe.
� But this only a start. Ask what can we learn? Needs more

work with:
� calculations and reasoning
� collecting data to make calculations/reasoning work

� Aim here: collecting data well.
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Finding available data (Chap. 3 intro)

� Question of interest, eg.:
� how are Canadians’ eating habits changing?
� social/economic backgrounds of college students
� relative safety of flying vs. driving

� Anecdotal evidence comes from own/others’ experiences.
But may not be typical, or remember untypical cases (plane
crash killing 200). May not represent whole phenomenon.
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The whole story

� Need to get data telling whole story. Visit library or Internet:
much data (not gathered especially for us but helpful eg. for
first question).

� From Statistics Canada website:
� Canadians eating more pasta/bakery/cereals, less red

meat than in past years
� Milk consumption steady (after falling in previous years),

but now more low-fat milk.
� Consumption of cream has increased (because

consumption of coffee has increased?)
� Reliable? Probably yes. Detailed surveys of representative

samples of Canadians gathered for information (not by
group with axe to grind).
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Producing data

� Producing new data expensive, but often only good route to
clear answers.

� Ideal: census. Measure every individual of interest, whole
population. Slow, impossibly expensive.

� In practice: sample. Choose small collection of individuals to
“represent” population, draw conclusions about population
based on sample.

� Samples are kind of observational study. Aim to collect data
without changing anything, and conclude whatever possible.
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Statistical experiment

� Compare statistical experiment: conditions deliberately
changed to see what happens. Better than observational
study, because can observe effect on response by changing
right thing (get cause/effect).

� Example: to find what Canadians eat, observational study
(sample) fine.

� But to find whether one diet healthier than another, need
experiment. Get 2 groups with same mix of age/sex/lifestyle;
one group gets diet 1, other gets diet 2. Groups started
similar, so differences at end caused by diets.
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Summary

� Ask: what can we learn?
� Using available data
� Sample from large population
� Observational study: observe only
� Statistical experiment: deliberately change conditions
� In experiment: difference at end can mean factor modified

made difference.
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Design of experiments (§3.1)

� Jargon:
� Individuals on which experiment done: experimental

units, or subjects if people.
� Specific experimental condition applied to units:

treatment.
� Example: comparing success rates of surgical procedure at

2 hospitals. Could just observe, but success differences
might be result of patient differences.

� Experiment: control which patient (subject) goes to which
hospital (treatment). Share out more/less critical cases
among hospitals; difference in success rates then evidence
of difference between hospitals.

� Success rate here response; hospital is (categorical)
explanatory variable, called factor. 2 specific hospitals
called levels of factor.
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Placebo effect and control groups

� Many subjects in an experiment respond favorably even if
treatment is ineffective (eg. patients getting pill with no active
ingredient). Called placebo effect, and placebo is treatment
designed to do nothing except look like real treatment.

� Group of subjects getting placebo called control group.
� Important to have control group because controls for

psychological effect of receiving “treatment” at all. Better to
assess one treatment by comparing two groups, treatment
and control.



- p. 123/335

Randomization

� How to assign experimental units to treatments? Need to
make treatment groups “similar”.

� Can try matching on all relevant variables. Helpful, but if
variables forgotten, can give dissimilar groups.

� Easier: use random assignment. Ensures that group
assignment not related to anything else. Groups usually
similar in terms of anything important.
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Using Minitab to do randomization

� Suppose we have 30 subjects, want 15 in treatment group
and 15 in control group. Effectively “draw names from hat”.

� Give each subject a number, 1–30. Calc, Make Patterned
Data, Simple Set of Numbers. Store in: type C1, First Value
1, Last Value 30. Click OK.

� Now select 15 subjects for treatment group: Calc, Random
Data, Sample from Columns. In box, sample 15 rows, click
From box, select C1, type C2 in other box. I got:

26 25 8 27 18
2 22 19 9 20
14 4 11 24 23

� These in Treatment group, rest in Control. (Different if
repeated.)

� For more than two groups, easier to “shuffle” whole list of 30
(sample all 30 rows). Then pick eg. first 10 for Treatment 1,
next 10 for Treatment 2, last 10 for Control.
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Conclusions from randomized experiments

� Groups in randomized experiment not exactly same, though
will be very similar. So any differences afterwards could be:
� chance: the groups weren’t quite the same to begin with
� treatment effect: one of the treatments really is better.

� Later, learn how big chance differences can be. Observed
difference bigger than chance: must be treatment effect.
Such difference called statistically significant.
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Randomization at work

� In many diseases, success of treatment depends on age of
patient. So want treatment, control groups to have similar
mean age.

� Worksheet trtcontrol has ages for 30 people. Mean age
is 54.

� Select 15 people for treatment group, calculate mean age. In
Sample from Columns, selecting 2 input and 2 output
columns carries age info along. My results:



- p. 127/335

Simulated treatment groups

Mean of C5 = 50.733

Mean of C5 = 54.400

Mean of C5 = 56.667

Mean of C5 = 56.200

Mean of C5 = 47.600

Mean of C5 = 55.267

Mean of C5 = 55.600

Mean of C5 = 53.067

Mean age of treatment group generally very close to 54. Taking
more people and larger groups would give even better results.
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Cautions about experimentation

� Experiments always conducted under artificial conditions.
Setting of experiment may not reflect real world – lack of
realism.

� Example: TV commercials tried out in “focus groups” where
people invited to watch and vote on several alternative
commercials for same product. Very unlike TV-watching, so
best focus-group commercial may not be best TV
commercial.
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Double-blind

� Also, people administering and receiving treatment may
have prejudices. (As patient, what if you knew you had
placebo?)

� Important to design experiment double-blind so no-one in
running of experiment can be biased. (Each subject gets
something identical with code number attached.)
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Matching and blocking

� Often measure each subject before experiment as well as
after – gives baseline for comparison (eg. learning or
exercise tasks). Example of matched pairs – 2
measurements per subject.

� “Case-control study” for cause of disease: for each “case”
with disease, select similar person without disease
(“control”), see whether supposed cause more common in
cases than controls.

� Idea: compare within pairs.
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Blocking example

� Another example: comparing effectiveness of pesticides in
farming. But soil type, fertility differ by location. So apparent
effectiveness depends on pesticide and location.

� Idea: divide locations into blocks – in each block, soil type,
fertility same. Then randomize pesticides into locations
within each block. Then each block has fair comparison of
pesticides A, B, C, D:

Location
1 2 3 4

Low fertility C A B D
Mod fertility C B D A
High fertility B C A D
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Summary

� Individuals in experiment called experimental units or
subjects.

� Condition being modified called treatment.
� May be effect of “nothing” called placebo effect; use control

group to provide comparison with “nothing”.
� Assign units (subjects) to control/treatment groups by

randomizing: groups “similar on average”.
� Big enough observed difference can be effect of treatment.
� Experiments can lack realism or lack blinding.
� Before-after studies can isolate effect of treatment.
� Units very different: test each treatment on mixture

(blocking).
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Sampling (§3.2)

� When can’t experiment, can observe, but impractical to
observe everyone. Jargon:
� Entire group of individuals of interest called population.
� Part of population actually examined called sample.

� How to choose sample?
� Bad: voluntary response, eg. polls on radio stations.

People choose themselves to be in sample, usually
because of interest in issue discussed. Results biased
towards strong opinions.

� Good: use randomization. No connection between being
in sample and issue being addressed.
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Simple random sample

� Simplest: put names (population) in hat, draw out some
(sample), say n.

� This is simple random sample. Each set of n individuals
equally likely to be sample actually selected.

� In Minitab: same idea as for randomizing treatment group.
Make list of population, use Calc, Random Data, Sample
from Columns to select individuals for sample.
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Stratified sampling

� A population often has dissimilar groups in it. Eg. opinions of
Ontario people different from those in Québec, West,
Maritimes.

� Simple random sample might under-represent some groups
by chance. Idea: take simple random sample from each
group. Combined stratified random sample represents all
groups.
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Multistage sampling

� Drawing simple random sample requires list of population –
big if sampling all of Canada!

� Also, SRS of Canada would have small numbers of people
in widely scattered places – impractical.
� Divide Canada into areas (eg. electoral ridings), select

random sample of ridings
� divide selected ridings into smaller areas (city blocks etc),

select random sample
� select random sample of people in smaller areas

� Easier process in stages; final sample less scattered.
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Sample survey problems

� Requires list of population/subpopulations. If list incomplete,
sample biased because of undercoverage.

� Individual chosen for sample may refuse to take part
(nonresponse). Nonresponders may be different from
responders; if so, causes bias in results. (Eg. calling homes
in working hours.)

� Questions on sample survey need careful, neutral wording:
� 44% think America spends too much on welfare
� 13% think America spends too much on assistance to the

poor.
� Good statistical design only part of successful sampling.
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Towards statistical inference (§3.3)

� So what is it possible to learn about a population when all
we have is a sample?

� Answer: quite a lot, as long as it’s a random sample.
� Really the purpose of statistics: from a sample, making

statistical inference about population.
� Because of randomness in sampling, won’t get exactly right

answer, but hope to be close (and to know how close).
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Parameter and statistic

� Imagine mean height of all adult women in Canada. Some
number of inches, but can only know by measuring
everyone. But draw random sample of 100 Canadian
women; mean height of those women can be calculated.

� Parameter is number describing population. Fixed but
unknown.

� Statistic is number describing sample. Can be calculated,
but different in different samples.

� Mean height of all Canadian women is parameter, mean
height of women in sample is statistic. Take different sample,
get different statistic.
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Sampling variability

� Random sampling eliminates bias/favoritism (no control over
which individuals end up in sample).

� But different samples have different sample statistics –
sampling variability. Hence sample gives imperfect
answer. But maybe answer close enough to be useful.

� Going from (one) sample to population difficult. But going
from population to sample(s) can be easy.
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Simulation

Many possible samples from most populations (number of
possible samples of 10 people from 100 is number with 14
digits). But looking at a lot of samples gives good enough idea.
Steps:
� pick a population to sample from
� generate a random sample from the population, calculate

sample statistic
� repeat previous step many times
� make histogram of results
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Simulation example

Example: 57% of students at college female. In samples of
500 students, what proportion of females might we get?
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Discussion of simulation results

� Centre near 0.57.
� Spread small (50–65% women, values close to 57%

commoner than extreme values).
� Shape close to normal.
� Collection of possible sample proportions called sampling

distribution – shows what sample statistic might be, if
population parameter known.
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Bias and variability

� Statistic usually used to estimate population parameter
(sample proportion to estimate population proportion). In
this role, called estimator.

� Sampling distribution of estimator desirably:
� centre around the population parameter (unbiased)
� has small spread (low variability).

� Fact: provided sample small part of population, sampling
distribution does not depend on size of population.
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Benefits of randomization

� Possible to work out sampling distributions by mathematics
as well as simulation. Only true for random samples – take
sample any other way, have no idea of sample-population
relationship.

� With random samples, can reduce variability by taking larger
sample. With very large random sample, sample statistic
very close to population parameter.

� Sampling distribution shows how close sample, population
quantities might be by going from population to sample.
Later, use same idea to go from (one) sample to population.
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Summary

� Choose sample by randomization (no connection between
sample and variable studied)

� Simple random sample (each individual has same chance to
be in sample, independent of others)

� Stratified, multistage sampling when simple random sample
inconvenient

� Conclusions only as good as sampling method: beware of
undercoverage, nonresponse, biased wording.
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Summary part 2

� Want to learn about population parameter, only have sample
statistic. But with random sampling, can know how close we
may be to “right answer”, even though different samples will
give different results.

� Reasoning from sample to population hard, but if we know
population, can figure out what kind of samples might come
from it.

� Can understand effect of looking at many different samples
by simulation.

� If sample is not drawn randomly, we are stuck!
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Probability: The Study of Randomness
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Randomness (§4.1)

� Toss a coin – can’t predict whether outcome will be Heads or
Tails.

� Roll a die – can’t predict whether you’ll roll a 1 or something
else.

� Play roulette (or other casino game) – can’t predict whether
you’ll win or lose.

� In each case, individual outcome cannot be predicted, but
pattern emerges:

� After many coin tosses, you will observe about 50% heads
and 50% tails.

� After many die rolls, about 1
6

of the rolls will be 1.
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Randomness and probability

� When individual outcomes are uncertain, but a pattern
emerges when many outcomes are observed, phenomenon
called random.

� Proportion of times an outcome is observed over the long
run called probability of that outcome ( 1

2
for Heads, 1

6
for 1

on die). Write as P(H) = 1
2
, P(1) = 1

6
.

� Probability is a number between 0 and 1. 0 means outcome
impossible, 1 means outcome certain.
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Probability models: some jargon (§4.2)

� To describe a random phenomenon, need two things:
� List of all possible outcomes (sample space, written S).
� Probability for each outcome.

� These two things together called probability model.
� Examples of sample spaces:

� flip a coin once. S = {H, T}.
� flip 4 coins, count number of heads. S = {0, 1, 2, 3, 4}.
� choose a Canadian at random, note down province of

residence.
S = {BC, Alberta, . . . , Ontario, . . . , Newfoundland}.
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Events

� An event is a collection of outcomes.
� Example: toss 2 coins. Sample space is

S = {HH, HT, TH, TT}. “Exactly one head” is an event,
consisting of outcomes HT and TH.

� An event has a probability, which you get by adding the
probabilities of its constituent outcomes.

� In this example, if the coin is fair (unbiased), any outcome
has probability 1

4
, so prob. of “exactly one head” is

1
4

+ 1
4

= 1
2
.

� The whole sample space is an event. Prob. of S here is

P(S) =
1

4
+

1

4
+

1

4
+

1

4
= 1.

This true in general: P(S) = 1.
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Equally likely outcomes

� P(S) = 1, so probs for all the outcomes must add up to 1.
� If can assume that each outcome equally likely, then probs

are all same (and must add up to 1). In 2-coin example
above, were 4 equally likely outcomes, so prob. of any one is
1
4
.

� In general, for n equally likely outcomes, prob. is 1/n.
� Even if outcomes equally likely, events may not be; depends

on how many outcomes they contain. Example (2 coins):
� P(exactly 0 heads) = P({TT}) = 1

4
.

� P(exactly 1 head) = P({HT, TH}) = 2
4
.

� P(exactly 2 heads) = P({HH}) = 1
4
).

� If n equally likely outcomes, and event A contains r of them,
P(A) = r/n.

� Most outcomes not equally likely. Eg. weather on a June day
likely to be sunny, and very unlikely to be snow!
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The event “not A”

� Returning to two-fair-coin example, suppose A = {HH}. A

contains 1 of 4 outcomes (equally likely), so P(A) = 1
4
.

� The event “not A”, written Ac, contains all the other
outcomes. So here Ac = {HT, TH, TT}. Then
P(Ac) = 3

4
= 1 − 1

4
.

� General rule: for any event A, P(Ac) = 1 − P(A).
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Independent and disjoint events

� Imagine that you toss 2 coins. Let A be event “get H on 1st
coin”, B be event “get H on 2nd coin”. Knowing that A
happens doesn’t make B any more or less likely: A and B
are independent events.

� Again imagine tossing 2 coins. Let A be event HH, let B be
event “head on 1st coin”, so B = {HH, HT}. If A happens,
B is certain to happen, so A and B not independent events.
A and B have outcome HH in common, so are overlapping
events.

� Now let C be event TT. If A happens, C cannot happen (coin
cannot show both heads and tails), so A and C not
independent. But have no outcomes in common; called
disjoint events.
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Finding probabilities from independent and
disjoint events

� For general events A and B,
� if A and B are independent, multiplication rule says

P(A and B) = P(A) · P(B)

� if A and B are disjoint, addition rule says

P(either A or B) = P(A) + P(B)

� To use these rules:
� First, are events independent? If they are, can use

multiplication rule.
� If not, are they are disjoint? If they are, can use addition

rule.
� Otherwise, cannot use either rule.
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Examples

� In a certain lottery, you can win either prize A, prize B, or no
prize. P(A) = 0.01, P(0) = 0.90.

� To find P(B), 3 probs have to add up to 1, so
P(B) = 1 − 0.01 − 0.90 = 0.09.

� P(some prize) = P(A or B). A and B not independent, but
are disjoint (can’t win more than 1 prize from 1 ticket), so
can use addition rule.
P(some prize) = P(A) + P(B) = 0.01 + 0.09 = 0.10. (Or:
“some prize” means “not no prize”, which gives answer as
1 − 0.90 = 0.10.)
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Lottery example continued

� Suppose two people play this lottery. Prob. that both win
some prize? Neither wins a prize?

� If they pick numbers separately, events independent, so can
use multiplication rule.

P(both win some prize) = 0.10 × 0.10 = 0.01

P(neither wins) = 0.90 × 0.90 = 0.81.

These two probs don’t add up to 1 because one person
could win and the other not.
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Random variables (§4.3)

� Suppose you:
� toss 4 coins and count the number of heads
� roll 2 dice and count the total number of spots

� In each case, each outcome gives you a number. (In 1st
case, don’t care which came up heads, just how many).

� This number called a random variable, labelled X.
� Each value of random variable has probability. P(X = 3) is

sum of probs of all outcomes leading to X being 3.
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Example

Value of X 1 2 3
Probability 0.3 0.6 0.1

� Is example of probability distribution (list of values and
probs).

� P(X ≥ 2) = P(X = 2) + P(X = 3) = 0.6 + 0.1 = 0.7.

� Note also that

P(X = 1, 2 or 3) = 0.3 + 0.6 + 0.1 = 1,

that is, all the probs together add up to 1.
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Probability histogram

Can make a plot: above each value of X, draw a bar whose
height is the probability. Looks like a histogram. For above
distribution:

Highest bar above 2, showing that X = 2 has highest prob.
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Continuous random variables

� So far, can list possible values and their probs: discrete
random variable. But what if all values in an interval (say
between 0 and 1) are possible?

� Cannot talk about prob. of individual value in a continuous
distribution (there are infinitely many values). So talk about
prob. of interval: P(3 ≤ X ≤ 4) or P(X > 7).

� Probability histogram becomes density curve (compare
§1.3). Probability of getting value in any interval is area
under density curve (recall normal distribution: Table A gives
area).

� Extra notes: example of density function.
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Mean of a random variable (§4.4)

� Data distribution has mean and SD you can calculate.
Likewise, probability distribution (and thus random variable)
has a mean and SD. But the way to calculate them is
different.

� For the mean of a random variable, multiply each value by its
probability, and add them up. To recycle our example:

Value of X 1 2 3
Probability 0.3 0.6 0.1

� Mean of X is (1)(0.3) + (2)(0.6) + (3)(0.1) = 1.8. Often use
symbol µ (µX) to represent mean (of X).

� Here, µX < 2 because P(X = 1) > P(X = 3).
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Estimation and law of large numbers

� Suppose we want to know mean height of all adults in
Canada. Idea from Chapter 3: take sample, look at sample
mean. But how close is that to mean height of all adults?

� Height of randomly chosen Canadian adult is random
variable H. H has a mean µ. Hope that sample mean x̄ will
be close to µ, especially with large sample.

� Law of large numbers says this more carefully. Decide how
close you want to be to µ (say within 1 inch), and how likely
you want to be that close (say 90%). Then, with large
enough sample, will be as close as you want with specified
probability.

� Supports idea of using sample mean as estimate of
population mean.
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Variance and SD of a random variable

� SD of a random variable measures its spread: that is,
whether values far from mean are likely or not.

� To calculate SD, first find variance, using recipe:
1. Take each value of the random variable and subtract the

mean.
2. Square each result.
3. Multiply by the probability and add up.

� SD is then square root of variance.
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Example

� To use our example again:
Value of X 1 2 3
Probability 0.3 0.6 0.1

Mean was µ = 1.8.
� Summarize calculations in table:

x x − µ (x − µ)2 × prob.

1 -0.8 0.64 0.192
2 0.2 0.04 0.024
3 1.2 1.44 0.144

Total 0.360

� SD is square root of this, so SD of X is
√

0.36 = 0.6.
� SD small, so values far from mean unlikely.
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Rules for means, SDs and variances

� Multiplying X by a constant multiplies the mean by same
constant.

� Adding a constant to X adds the same constant to the mean.
� Multiplying X by a constant multiplies the SD by the same

constant.
� Adding a constant to X doesn’t change the SD.
� For two random variables X and Y, mean of X + Y is sum of

means of X and Y.
� For two independent random variables X, Y, variance of

X + Y is sum of variances of X and Y.
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Examples

� Suppose the temperature in a city has mean 7 and SD 10
(degrees C). What are the mean and SD in degrees F?

� Get degrees F by multiplying by 1.8 and adding 32.
� So mean in degrees F is (7)(1.8) + 32 = 44.6. But for SD,

adding makes no difference, so SD in degrees F is
(10)(1.8) = 18.

� Now let X be sales of cars at a dealership: X has mean 20
and SD 5. Y is sales of trucks, with mean 8 and SD 4.

� Total sales have mean 20 + 8 = 28. If X and Y independent,
variance of total sales is 52 + 42 = 41, so SD is

√
41 = 6.4.

But X and Y may rise and fall together (eg. with economic
conditions).
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Chapter 5: Sampling distributions
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Introduction

� Statistical inference: from sample to population.
� Simulation (mathematics): from population to possible

samples (sampling distribution).
� Look at some more sampling distributions. First simulate,

then use exact mathematical results. Along way, learn why
operating big casino is money-maker even though casino
games based on chance and randomness.
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Sampling distributions for counts and pro-
portions (§5.1)

� Sample surveys often ask questions with “yes/no” type
answers, like “Do you consider that this university is well
run?”.

� Industrial quality control: samples of TVs are taken from
production line and tested. Each TV “satisfactory” or not.

� In each case, “successes” and “failures” in the sample tell
something about the populations.
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Real and hypothetical populations

� Population of “all students at UTSC” actually exists
(registrar’s records). Population of “all TVs produced at
factory” harder to grasp. But often justified in treating
sampled TVs as random sample from hypothetical
population.

� Many possible sampling distributions (corresponding to
different kinds of statistic we might measure). Nature of
sampling distribution depends on kind of population and
sampling procedure.
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Sample counts and proportions

� Suppose we sample 20 TVs from our production line, and
find that 17 of them work satisfactorily. Just want to know
what % of all TVs would work, so doesn’t matter which ones
in sample are OK.

� 17 here is sample count (x) of satisfactory TVs out of 20
sampled.

� Sample proportion (p̂) is sample count as fraction of whole:
here 17/20 = 0.85.
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Binomial distribution

Sampling distribution of sample count depends on sampling
method, but common scenario is:
� Fixed number n of observations.
� Observations fall into one of two categories ( “success” and

“failure”, alternatively “heads” and “tails”)
� Observations all independent (knowing one observation to

be success doesn’t affect chance of others being success)
� Chance of success for each observation always same (p).
Simple example: tossing coin 10 times; # heads has binomial
distribution.
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Binomial distribution in sampling

� Counts of successes in sample often described by binomial
distribution. True provided sample is small fraction of
population.

� (If sample most of population, might get almost all
population successes before finished sampling, then know
we have failures to come.)
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Simulating binomial

� TVs: suppose 90% of all TVs produced in past satisfactory.
Treat as population proportion p = 0.90. Sample n = 20

TVs; how many might be satisfactory?
� Simulate. Minitab: Calc, Random Data, Binomial. Generate

1000 rows of data (“many samples”), store in C1, Number of
Trials 20, Probability of Success 0.90.
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Simulated binomial: n = 20, p = 0.9
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Discussion of histogram

� Shape skewed to left.
� Centre around 18 (90% of 20).
� One sample had only 13 satisfactory TVs.
� Now try with samples of 200 TVs (n = 200, p = 0.90):
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Simulated binomial: n = 200, p = 0.9

Centre around 180 (90% of 200). Shape like normal
distribution.
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Comparing proportions

Counts difficult to compare (out of 20 vs. 200). Calculate
sample proportions p̂ (divide by 20 or 200), show boxplots of
proportions.
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Discussion

� For both sample sizes, centre of sampling distribution close
to 0.90. But sampling distribution for n = 200 much less
spread out, and more symmetrically shaped.

� General facts for sample proportions based on large sample:
� sample proportion almost certainly very close to the

population proportion. Law of Large Numbers.
� sampling distribution shape very close to normal.
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The point of all this

� Sampling distribution of count has binomial distribution; for
large samples, sampling distribution of count or proportion
close to normal.

� That is, if we know population, we know what samples from
it will look like.

� In particular, know how close sample proportion likely to be
to population proportion.

� Later, provides key to reversing logic: going from sample to
population. This is useful thing in practice – eg. tells factory
manager whether enough of all TVs off production line work
satisfactorily.
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Summary

� May have a population divided into two parts: “success” and
“failure” say.

� If:
� sample size of n trials fixed
� successes equally likely on each trial
� trials independent

then number of successes described by binomial
distribution.

� Often describes sampling from this population (unless
sample is most of population)
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Summary continued

� Can simulate from a population, to see what samples from it
may look like.

� In a large sample:
� sample proportion will be close to population proportion
� distribution of possible sample proportions will look

normal
� Later, reverse logic: from sample, draw conclusion about

population.
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Sampling distribution of sample mean (§5.2)

� Counts and proportions describe categorical data.
Quantitative data: describe using sample mean, median, SD
etc.

� Here, concentrate on sample mean x̄ and how close it might
be to population mean µ.

� Same attitude as proportions: start from population, see
what samples from it look like.



- p. 186/335

Roulette

Gambling game popular in casinos. Based on wheel with
numbers (from gambling-hall-online.com):
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How roulette works

� Ball spun around wheel, eventually falls into “pocket” next to
a number. Thus outcome is a single number.

� Bet on single number or combination. If outcome matches
any of numbers in a combination, you win.

� Wheel has numbers 1–36 plus 0 and 00. Bets paid as if 0
and 00 absent (gives casino small edge).
� “High”: win on 19–36, lose otherwise. Win $1, lose $1.
� “4 numbers”: win on 7, 8, 9 or 10 (say), lose otherwise.

Win $8, lose $1.
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Simulated roulette in Minitab

� Column with numbers 1–36, 0, 00. For each bet, create
column with winnings for each number (worksheet
roulette).

� Session window: turn on command language (Editor, Enable
Command Language).

� Simulate 100 plays of high-low bet. Calc, Random Data,
Sample from Columns. Sample from C1 and C2 (to get
winning number and winnings). Put results in empty
columns, say C6, C7. Check “sample with replacement” box.
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Winnings over time

� See evolution of winnings over time: Calc, Calculator. Store
Result in C8. Scan through list of functions to Partial Sums,
double-click. In Formula box, see PARS(number).
Double-click C7, OK. C8 contains total winnings so far.

� Plot this over time: Graph, Time Series Plot. Double-click
C8, OK.
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Example run of high-low bet
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More runs

� Select commands in Session window back to Sample,
Edit-Copy. Go to end of Session window (last MTB >),
Edit-Paste, Enter. Get another graph.

� Try with 4-number bet. Calc, Random Data, Sample from
Columns. Sample from C1 and C3, put results in C6, C7 (as
before), check With Replacement. Total winnings, plot as
before.

� Typical picture more “jagged”: lose for some time,
occasionally win big.
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4-number bet

Here, down $1 at end, but fluctuates wildly.
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Comparison of high-low and 4-number

� Repeated simulations suggest 4-number-bet results “wilder”
than for high-low – more likely to come out ahead, but also
more likely to lose big.

� Mathematical calculations support this. For single plays,
work out mean and SD of winnings per play for 2 bets (using
methods of §4.4):

Bet Mean SD

High-low –0.0526 0.9986
4-number –0.0526 2.7620
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Sampling distribution of sample mean

� Can think of 100 plays of roulette as sample from population
of “all possible plays”.

� Mathematical results. Write population mean as µ (“mu”)
and population SD as σ (“sigma”).

� Then sampling distribution of sample mean x̄ has:
� mean µ (same as population mean)
� SD σ/

√
n (smaller than population SD).
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Shape of sampling distribution

Investigate shape by simulation. Depends on sample size – for
roulette, times each bet made. 4-number, 20 bets:

Skewed right.
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4-number, n = 100 bets

More bets: less spread, shape like normal.
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High-low, n = 20

High-low, 20 bets, also shape like normal.
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Central Limit Theorem

� So where does normal distribution come from?
� Fact: draw simple random sample size n from any

population. If n large, sampling distribution of x̄ has approx.
normal shape.

� Remarkable fact, called central limit theorem.
� Required largeness of n depends on population – must be

large enough to “iron out” skewness. Roulette: high-low
population near symmetric to start, so n = 20 large enough.
But 4-number population skewed (small chance to win big),
so needed n = 100.
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Calculations for sample means

� Central Limit Theorem allows use of normal distribution to
calculate chances, provided sample size n big enough.

� First: get mean µ, SD σ of population. (Also mean, SD of
single observation randomly drawn from population.)

� Next: calculate mean, SD of sampling distribution.
Respectively µ and σ/

√
n.

� Finally: complete calculation using Table A.
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Chances of profit and of losing at least $0.10
per play

� Roulette: high-low bet, 100 plays.
� Mean of population −0.0526, SD of population 0.9986.

Sampling distribution has mean −0.0526 (same), SD
0.9986/

√
100 = 0.09986.

� Chance of profit? Mean winnings per play > 0.
z = (0 − (−0.0526))/0.09986 = 0.53.

� Table gives 0.7019, chance of mean winnings less than 0
(loss). Chance of profit 1 − 0.7019 = 0.2981.

� Chance of losing $0.10 per play or worse? Replace 0 by
−0.10, repeat. z = (−0.10 − (−0.0526))/0.09986 = −0.47,
answer 0.3192.
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4-number bet

� Compare with 4-number bet, 100 plays. Population mean
−0.0526, SD 2.7620. Sampling distribution mean −0.0526,
SD 2.7620/

√
100 = 0.2762.

� Chance of profit? As before:
z = (0 − (−0.0526))/0.2762 = 0.19, chance of profit
1 − 0.5753 = 0.4247.

� Chance of losing $0.10 per play or worse?
z = (−0.10 − (−0.0526))/0.2762 = −0.17; answer 0.4325.

� 4-number bet offers bigger chance of profit (0.42 vs. 0.30),
but bigger chance of large loss (0.43 vs. 0.32).

� Because 4-number bet more variable, result you get could
be further from mean, hence likelier profit or large loss. But
“average average” same for both bets.
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Summary

� Understand (sampling) distribution of sample mean from
population with mean µ and SD σ.

� Can do by simulation or mathematics.
� Mathematics: sampling distribution of sample mean x̄ has

mean µ and SD σ/
√

n.
� For large sample, sampling distribution has normal shape

(central limit theorem).
� Enables (approx.) calculations about values of sample mean

when population mean, SD known.



- p. 203/335

Chapter 6: Introduction to Inference
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Estimating with confidence (§6.1)

Previous simulations, calculations say that

if I know about the population, I can say what kind of
samples I might get from that population. In particular:
sample mean and sample proportion have sampling
distributions with mean, SD I can calculate, and a
normal shape if n large.

But in practice, don’t know about population; just have one
sample from it.
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Note logic of this example

SAT-M scores have SD σ = 100 points. Take random sample of
500 California high-school seniors, give test to all. Sample
mean is 461. What about mean score of all California seniors?
� Sample size large. So sampling distribution of sample mean

approx. normal, mean µ, SD 100/
√

500 = 4.5.
� 68-95-99.7 rule: in about 95% of all samples, x̄ within 2

times right SD (ie. 2 × 4.5 = 9 points) of µ.
� same as saying µ within 9 points of x̄.
� So interval x̄ − 9 to x̄ + 9 has µ in it somewhere for 95% of

all possible samples.
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Confidence interval process

� Example: x̄ = 461, so interval for our data from
461 − 9 = 452 to 461 + 9 = 470. Called 95% confidence
interval for µ.

� Understand process:
� Randomness from “all possible samples”. So confidence

in procedure, not any one answer.
� Cannot know whether our one interval from 95% “good”

ones that contain µ, or 5% “bad” ones that don’t.
� See figure 6.3 in text (next page).
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Figure 6.3 (text)
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Confidence intervals

� 95% confidence interval for µ above was x̄ ± 9. Typical
interval is

estimate ± margin of error.

� Estimate calculated from sample; margin of error expresses
accuracy of estimate.

� Many different kinds of confidence interval, depending on
parameter being estimated, sampling methods etc., but all
have:
� two numbers giving lower and upper limits for interval
� “confidence level” (95% above) giving chance that

procedure gives interval containing parameter
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Confidence interval for population mean

� By going up and down 2 times the right SD, got 95%
confidence interval (more or less) because of 68-95-99.7.

� Can make confidence interval for any level of confidence.
Lower confidence level (like 90%) gives shorter interval, but
greater chance of interval not containing µ.

� General formula for confidence interval:

x̄ ± z∗
σ√
n

where choose z∗ to get confidence level right:
Level 90% 95% 99%
z∗ 1.645 1.960 2.576
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Getting z∗

� 95% confidence interval based on middle 95% of normal
distribution.

� Leaves 100% − 95% = 5% for two ends.
� That is, 2.5% = 0.025 for each end.
� Look up 0.0250 in body of Table A: get z = −1.96. Ignore

minus sign to get z∗ = 1.96 for 95% CI.
� Same idea for 80% CI: 20% in the ends, 10% = 0.1000 in

each end, z = −1.28, so z∗ = 1.28.
� Can verify 90% and 99% z∗ values also.
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Example of confidence interval

� A large hospital wants to estimate the average length of time
patients stay in the hospital. Sample 90 records, find mean
stay is 4.63 days; SD of length of stay known from previous
data to be 3.7 days.

� 95% confidence interval uses z∗ = 1.96:

4.63 ± 1.96 × 3.7/
√

90 = 4.63 ± 0.76,

from 3.87 to 5.39 days.
� 99% confidence interval uses z∗ = 2.576:

4.63 ± 2.576 × 3.7/
√

90 = 4.63 ± 1.00,

from 3.63 to 5.63 days.
� 99% confidence interval bigger than 95%, because have to

be more confident in answer (only wrong in 1% of all
possible samples).
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Confidence interval for mean in Minitab

� Can use software for calculations. Data in worksheet
hospital.

� Stat, Basic Statistics, 1-sample Z. in Variables, select
column (“stay”), ensure Confidence Interval selected, put 95
in Level, put in 3.7 for Sigma:
The assumed sigma = 3.70

Variable N Mean StDev SE Mean 95.0 % CI

stay 90 4.633 3.785 0.390 ( 3.869, 5.398)

basically as before.

� Repeat for 99%: change Level to 99:
The assumed sigma = 3.70

Variable N Mean StDev SE Mean 99.0 % CI

stay 90 4.633 3.785 0.390 ( 3.629, 5.638)
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Summary

� Know how far apart sample and population means might be,
so can make guess at possible values for population mean
based on sample.

� Meaning of eg. 90% confidence interval for pop. mean: in
90% of all possible samples, procedure will give interval
containing population mean. (Confidence is in procedure).

� General formula for confidence interval for pop. mean, when
σ known: x̄ ± z∗ σ√

n
where choose z∗ to get confidence level

right.
� 95% CI more likely to contain pop. mean than 90% interval,

but interval will be bigger (less precise).
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How confidence intervals behave

� Size of confidence interval depends on margin of error
m = z∗σ/

√
n. Want small margin of error – then pinned

down parameter precisely.
� If margin of error too large:

� use lower confidence level
� reduce population SD σ
� increase sample size n.

� Sometimes σ can be reduced by measuring more carefully,
but usually only good way to reduce margin of error is larger
sample.
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Choosing sample size in advance

� Previously, used available data and accepted margin of
error. But can plan study more carefully: decide on required
margin of error, then figure out sample size needed.

� Take margin of error formula equation above:

m =
z∗σ√

n
;

rewrite in terms of sample size n.
� This gives

n =

(

z∗σ

m

)2
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Sample size for hospital example

� Hospital example: in 95% interval, margin of error 0.76 for
n = 90, using σ = 3.7. How many patient records needed to
reduce margin of error to 0.5?

� Formula:

n =

(

1.96 × 3.7

0.5

)2

= 210.4.

� To be safe, round up: need to sample 211 patient records to
get this small a confidence interval.

� Required margin of error only a little smaller, but sample is
over twice as big as original 90, so will cost much more.
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Cautions with confidence intervals

� Works for simple random sample, not for stratified/multistage
samples.

� Sample mean can be affected by outliers.
� Sample size large enough to “iron out” skewness etc.
� Must know population SD σ. (This dealt with in Chapter 7.)
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Summary

� Margin of error can be made smaller by taking larger sample.
� Can choose sample size required for desired margin of

error: n = (z∗σ/m)2.
� This CI calculation only works for simple random sample

with population SD σ known.

Confidence interval answering question “What values of
population parameter plausible?”. Another question: “I have a
value; is this value plausible?” Answer this by test of
significance.
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Tests of Significance (§6.2)

� Logic:
� suppose unemployment rate is 7.2% (as in 2003)
� take random sample of 500 people, get 23 unemployed

(4.6%).
� examine kinds of random samples with n = 500 and rate

7.2%
� find that 4.6% unusually low in comparison
� conclude unemployment rate changed (such sample rare

if population rate 7.2%)
� Using sample to draw conclusion about population:

particular population proportion, 7.2%, not plausible.
� This logic called test of significance.
� Might be wrong: is possible to get sample proportion 4.6%

from population proportion 7.2%, but very unlikely. Always
have to accept risk of being wrong.
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Sampling distribution

Sampling distribution of sample proportion if rate 7.2%
(simulation), for sample size n = 500:

Chance of observing 4.6% or more extreme very low.
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Test procedure for population mean µ

� assume that a given value for µ correct, eg. µ = 10. Called
null hypothesis. Opposite, µ 6= 10, called alternative
hypothesis.

� Take random sample from population, calculate x̄.
� Find chance of x̄ value as extreme or more extreme, if null

hypothesis true. Called P-value.
� If P-value small, reject null hypothesis in favour of

alternative. If not, do not reject null hypothesis.
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Analogy: court of law

Court of law Test of significance

Accused innocent until
proven guilty

Null hypothesis assumed
true until proven wrong

Found guilty only with
strong evidence

Reject only if P-value small

Innocent Null hypothesis true

Guilty Null hypothesis false

Found not guilty Do not reject null hypothesis

Found guilty Reject null hypothesis
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Legal and statistical decision process

Legal Decision
Find not guilty Find guilty

Truth Innocent Correct Serious error
Guilty Error Correct

Testing Decision
Not reject null Reject null

Truth Null hyp. true Correct Type I error
Null hyp. false Type II error Correct
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Stating hypotheses: example

� Calcium levels in blood of healthy young adults vary with
mean µ = 9.5 mg/dl and SD σ = 0.4 mg/dl. Clinic in rural
Guatemala measured blood Ca levels of 180 pregnant
women; sample mean x̄ = 9.58.

� Trying to prove, based on sample, that blood calcium levels
higher for these women. Thing “trying to prove” is alternative
hypothesis: in symbols, Ha : µ > 9.5 for these women.

� This alternative hypothesis one-sided. µ 6= 9.5 would have
been two-sided.

� Other conclusion is that these women same as healthy
young adults generally. “Same” is null hypothesis,
H0 : µ = 9.5.
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Sampling distribution

� Ask: if null hypothesis true, is sample mean of 9.58 typical or
untypical?

� To answer, look at sampling distribution of sample mean. If
null hypothesis true, sampling distribution has mean µ = 9.5,
SD σ/

√
n = 0.4/

√
180 = 0.0298 and approx. normal shape

(because of large sample).
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Sampling distribution of sample mean if H0

true

9.58 is a long way out.
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P-values

� How far out is “far out”?
� Idea: find chance of being as extreme or more extreme in

sampling distribution from null hypothesis. “Extreme” means
“in the direction of the alternative hypothesis”.

� For a one-sided test, two steps:
� check whether sample mean is correct side of H0 mean

(that is, if Ha has >, want x̄ bigger; if Ha has <, want x̄
smaller). If not, “wrong side”, don’t reject H0.

� If sample mean is correct side, find prob. of whichever
direction Ha says.

� In our case, Ha : µ > 9.5, and x̄ = 9.58 > 9.5, so we are on
“correct side”. Find P(x̄ > 9.58). Then σ = 0.4, n = 180 so
z = (9.58 − 9.5)/(0.4/

√
180) = 2.68. Prob of > is

1 − 0.9963 = 0.0037, small.
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P-values for two-sided tests

� Now suppose Ha had been Ha : µ 6= 9.5. This two-sided:
looking for any difference from null.

� For two-sided test, P-value found this way:
� Compare x̄ to H0 value of mean.
� If >, find prob. of >; if <, find prob. of <.
� P-value is 2 × prob. just found (“× by number of sides”).

� In example, H0 : µ = 9.5 and x̄ = 9.58, so 9.58 > 9.5. Find z
as before (2.68); find prob. of greater (0.0037); P-value is
2 × 0.0037 = 0.0074.

z here called test statistic: stepping stone to getting P-value.
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Statistical significance

� Reject null hypothesis if P-value “small”. But how small?
� Compare P-value to number α (alpha) chosen in advance.

α = 0.05 common choice. If P-value smaller, result called
statistically significant at level α.

� “Significant” here means only “evidence against null
hypothesis reaches stated level” – not “significant” in sense
of “important”.

� Statement of conclusion in example: Result statistically
significant (P=0.0074). Or, choosing α = 0.05 in advance,
“the P-value is 0.0074 and H0 can be rejected.”

� Whichever way conclusion expressed, state your P-value.
Enables reader to make own decision (if they disagree with
your choice of α).
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Choice of α

� Reflects strength of evidence against null hypothesis
regarded as convincing. Case-by-case.

� Small α like 0.01 requires strong evidence. Hard to reject
null hypothesis when true (good), but also hard to reject
when false (bad).

� Large α like 0.10: Often reject null hypothesis when true
(bad), but also often reject when false (good).

� No easy route to correct decision!
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Another example

� The General Health Questionnaire (GHQ) measures mental
health (low score better). In general population, SD is σ = 5.
Researcher wants to show that mean GHQ for all
unemployed men exceeds 10. Sample of 49 unemployed
men, sample mean 10.94.

� Researcher wants µ > 10, so is alternative hypothesis. Null
hypothesis µ = 10 (always “=”). Choose α = 0.05.

� One-sided test. Sample mean on correct side of 10:
10.94 > 10 so alternative could be true. So work out P-value
as prob. of >.

� Test statistic z = (10.94 − 10)/(5/
√

49) = 1.32.
� P-value is 1 − 0.9066 = 0.0934.
� P-value not smaller than α, so cannot reject H0. Result not

statistically significant.
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Interpreting result

� Sample mean this high in about 10% of samples if
population mean really 10.

� Have not proved that population mean GHQ is 10 – have
only shown that it could be 10 (but could be many other
values as well).

� (Confidence interval for µ here: 9.54 to 12.34. Anything in
here “plausible” value for µ.)
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One and two-sided P-values (summary)

� If alternative has 6= (2-sided):
� if z > 0, P-value is twice prob. of greater
� if z < 0, P-value is twice prob. of less

� If alternative has < (1-sided):
� if z > 0, P-value is large: do not reject null. “Wrong side”.
� if z < 0, P-value is prob. of less.

� If alternative has > (1-sided):
� if z > 0, P-value is prob. of greater
� if z < 0, P-value is large: do not reject null. “Wrong side”.
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Tests of significance in Minitab

When have data, can get Minitab to do all the calculations. In
worksheet ghq, 49 scores in column C1.
Stat, Basic Statistics, 1-sample z (again). Select C1, click Test
Mean. Change 0.0 to 10, change Alternative to Greater Than.
Put in value 5 for sigma. Click OK:
Test of mu = 10.000 vs mu > 10.000

The assumed sigma = 5.00

Variable N Mean StDev SE Mean Z P

ghq 49 10.939 5.113 0.714 1.31 0.095

Minitab’s P-value 0.095, conclusion as before.
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Summary

� Is given population parameter value plausible?
� What we try to prove called alternative hypothesis (accused

is guilty).
� Status quo called null hypothesis (always contains =).

(accused innocent)
� Calculate P-value: chance of result as or more extreme, if

null hypothesis true. Small P-value, reject null hypothesis,
otherwise don’t reject.

� To decide “small”, choose α before doing test. Reject null if
P-value smaller than α. Often choose α = 0.05.
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CIs and tests of significance

� Confidence interval: what values are plausible?
� Significance test: is this value plausible?
� Related ideas. Suggests: pick null hypothesis value for µ. If

this null hypothesis not rejected (“plausible”), value inside
confidence interval. If null hypothesis rejected, value outside.

� True, provided: (a) doing 2-sided test, (b) match up α and
confidence level. (Eg. for 95% interval, use α = 0.05.)

� If test 1-sided, have to check for “correct side” and adjust α
(double it).
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Example

Weights (kg) of 24 male runners. In worksheet
runner_weight. Use σ = 4.5 kg, α = 0.05.
� Suppose null hypothesis is µ = 59 (against µ 6= 59):

Test of mu = 59.000 vs mu not = 59.000

The assumed sigma = 4.50

Variable N Mean StDev SE Mean Z P

weight 24 61.792 4.808 0.919 3.04 0.0024

Null hypothesis rejected. 59 outside confidence interval.

� Now try null hyp. µ = 62:
Test of mu = 62.000 vs mu not = 62.000

The assumed sigma = 4.50

Variable N Mean StDev SE Mean Z P

weight 24 61.792 4.808 0.919 -0.23 0.82

Null hyp. not rejected. 62 inside confidence interval.
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Example continued

� Finally, null hyp. µ = 64:
Test of mu = 64.000 vs mu not = 64.000

The assumed sigma = 4.50

Variable N Mean StDev SE Mean Z P

weight 24 61.792 4.808 0.919 -2.40 0.016

Null hyp. rejected, 64 outside interval.

� To check this, calculate 95% confidence interval (to go with
α = 0.05):
The assumed sigma = 4.50

Variable N Mean StDev SE Mean 95.0 % CI

weight 24 61.792 4.808 0.919 ( 59.991, 63.592)

As predicted, 62 inside, 59 and 64 outside.

� P-value for testing µ = 64 vs. µ 6= 64 was 0.016. If used
α = 0.01, would not reject. 64 should be inside 99%
confidence interval, as it is (not shown).
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Use and abuse of tests (§6.3)

Calculations for tests simple (with software), but wise use of
tests difficult. Each test valid in certain circumstances with
certain assumptions.
In testing a mean, as we have done:
� Works for simple random sample, not for stratified/multistage

samples.
� Sample mean can be affected by outliers.
� Sample size large enough to “iron out” skewness etc.
� Must know population SD σ.
same as for confidence intervals.
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Strength of evidence vs. decision-making

� Best way to give result of significance test is to give P-value.
Shows strength of evidence against null hyp. Enables reader
to judge whether evidence “strong enough”.

� To use test to make decision, must choose α before looking
at data. Choice depends on consequences of wrong
decision. If rejecting null in favour of alternative expensive,
need strong evidence to reject null (small α). Subjective,
extra-statistical.

� α = 0.05 often used, reasons mainly historical. No real
difference between P-values 0.049 and 0.051.
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Statistical and practical significance

� Example: test H0 : µ = 20 vs. Ha : µ 6= 20 using sample
n = 10, 000, σ = 0.2. x̄ = 20.005: P-value 0.012. If α = 0.05,
reject null hyp. even though sample mean very close to 20.

� Difference between 20 and 20.005 very small, maybe of no
practical relevance. P-value says only that with this big a
sample, sample mean of 20.005 unusually high.

� Statistical significance not same as practical significance.
� Other way around too: with small sample, can get sample

mean far from null hyp. but not statistically significant.
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Don’t ignore lack of significance

� Tests with large P-values also important, even though not
statistically significant.

� Typical science: researcher has new theory about some
effect (alternative hyp.) tested against existing theory (null).
Tries to gather evidence against null.

� Suppose now P-value not small. Could indicate theory
wrong, or flaw in experiment. If theory plausible, result worth
knowing about.

� However, tendency in scientific work only to publish
statistically significant results.
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Statistical inference not always valid

� Badly designed surveys/experiments give invalid results –
cannot rescue by clever analysis.

� Need to use proper experimental design and appropriate
analysis, with right kind of randomization.

� But also face data not from experiments. Eg. diameters of
holes bored in engine blocks in car-making. Check whether
reasonable to treat as independent observations from
normal distribution using descriptives (graphs, numbers).

� In general, learn how data produced, assess whether
test/interval meaningful.
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Searching for significance

� Right way: decide on effect sought, design experiment to
assess effect, significance test on results.

� But tempting: collect a bunch of data, do a bunch of tests,
see what is significant.

� Example: industrial process with desired mean 50, SD 10.
Take samples size 50 each day; test µ = 50 vs. µ 6= 50.
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Results

Test of mu = 50.00 vs mu not = 50.00

The assumed sigma = 10.0

Variable N Mean StDev SE Mean Z P

C1 50 49.69 11.35 1.41 -0.22 0.83

C2 50 52.21 8.39 1.41 1.56 0.12

C3 50 51.39 8.71 1.41 0.99 0.32

C4 50 50.49 9.61 1.41 0.35 0.73

C5 50 49.43 9.50 1.41 -0.40 0.69

C6 50 49.02 10.91 1.41 -0.69 0.49

C7 50 52.55 8.64 1.41 1.80 0.072

C8 50 52.88 8.30 1.41 2.04 0.042

C9 50 48.25 10.20 1.41 -1.24 0.22

C10 50 49.55 7.81 1.41 -0.32 0.75

� Result on 8th day (C8) significant at α = 0.05. What
happened?

� Answer: nothing. Data randomly generated from normal
distribution mean 50, SD 10. Result only of doing many
tests.



- p. 246/335

Summary

� Value for parameter inside confidence interval — value
plausible — null hyp. of that value wouldn’t be rejected. True
as long as test 2-sided and α, confidence level match up.

� Tests come with assumptions. Here: simple random sample,
mean appropriate for “centre”, sample size large enough,
must know σ.

� P-value measures strength of evidence (smaller = stronger).
Use for decision-making by choosing α first and rejecting null
if P-value < α.

� Statistical significance not same as practical significance.
� Lack of (statistical) significance may mean plausible theory

incorrect.
� Statistical inference depends on correct design,

randomization, analysis. Can sometimes treat data “as if”
random sample.

� Doing many tests will probably produce some significant
results by chance.
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Power (§6.4)

� Two types of error in significance testing:
� Type I: rejecting null hyp. when true
� Type II: not rejecting null hyp. when false

� Concentrated mostly on Type I (by choosing α), but type II
also important. Want to design experiment that has some
chance of detecting desired effect – low chance of type II
error, or high power — a high chance to correctly reject the
null.

� Can sometimes figure power by calculation, but usually
easier to simulate or use software (later).
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Power example

� Consider text example *** check *** 6.28 (p. 431).
Researchers testing whether exercise program increases
total bone mineral content (TBBMC) in young women over
6-month period. Based on previous data, prepared to
assume population SD is 2. Intend to use n = 25 subjects.

� How likely are they to detect change of 1 unit in TBBMC?
That is, if actually µ = 1 and go through test procedure, how
often would they reject null with P-value < 0.05?
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Power by simulation

� Simulate data from true population (mean 1, SD 2). Carry
out test for each simulated sample, see how many times null
rejected.

� Minitab: do 50 simulated tests: Calc, Random Data, Normal.
Generate 25 rows of data, store in C1-C50 (type into box).
Mean 1, SD 2. Click OK. Then Stat, Basic Statistics,
1-sample Z. Variables C1–C50, test mean 0, alternative
“greater than”, sigma 2.
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Power example results

Test of mu = 0.000 vs mu > 0.000

The assumed sigma = 2.00

Variable N Mean StDev SE Mean Z P

C1 25 1.236 1.671 0.400 3.09 0.0010

C2 25 0.675 2.057 0.400 1.69 0.046

C3 25 0.319 2.449 0.400 0.80 0.21

C4 25 0.965 2.469 0.400 2.41 0.0080

C5 25 1.123 1.982 0.400 2.81 0.0025

C6 25 0.743 1.749 0.400 1.86 0.032

C7 25 0.781 1.825 0.400 1.95 0.026

C8 25 0.311 1.747 0.400 0.78 0.22

...

6 rejections in 8 tests shown (didn’t reject for C3 and C8); got
39 rejections in 50 tests, estimate power 39/50 = 0.78.
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Power by Minitab

Minitab does power directly: Stat, Power and Sample Size,
1-sample Z. Select “Calculate power for each sample size”, fill
in sample size 25. “Difference” is difference between null hyp.
and true means, here 1 (put in). Put in 2 for sigma (bottom).
Click Options, select Greater Than for alternative. Click OK:
1-Sample Z Test

Testing mean = null (versus > null)

Calculating power for mean = null + 1

Alpha = 0.05 Sigma = 2

Sample

Size Power

25 0.8038

Difference detectable in 80% of all possible samples.
(Simulation close.) Researchers have good chance of success.
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Determining sample size

� At beginning of study, need to know how many
subjects/experimental units to use. Common way of
deciding: choose power for alternative of interest, then use
software to find sample size making this work.

� Suppose researchers of previous example actually wanted
power 0.90 to detect an increase of 1 unit in TBBMC. Would
need bigger sample than 25, but how big? Minitab: Stat,
Power and Sample Size, 1-sample Z as before. Select
“Sample size for each power”, fill in 0.90 for power; 1 for
difference, 2 for sigma (as before). In Options, make sure
Greater Than selected for alternative.
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Sample size results

Results:
1-Sample Z Test

Testing mean = null (versus > null)

Calculating power for mean = null + 1

Alpha = 0.05 Sigma = 2

Sample Target Actual

Size Power Power

35 0.9000 0.9054

35 subjects are needed. Actually, 35 subjects gives power
> 0.90, but 34 subjects gives power < 0.90, so 35 safe.
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Summary

� Power is chance of rejecting null hypothesis when it is false.
Want power to be high.

� Study power by deciding what change is important to detect,
and then finding chance of detecting that change.

� Can simulate: assume important change has happened
(change in µ), simulate from that population, do original test,
see how often original null rejected.

� Can calculate power directly with Minitab.
� Before study, can determine sample size needed to obtain a

specified power against a specified alternative.
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Chapter 7: Inference for Distributions
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Inference for Population Mean (§7.1)

� In Chapter 6, did tests and confidence intervals for
population mean µ, but needed to know population SD σ –
not realistic!

� Can always calculate sample SD. Use symbol s.
� Obvious remedy: use sample SD in place of population SD.
� Will z procedures still work?
� Investigate confidence intervals by simulation.
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Simulation in Minitab

� Minitab: generate 100 random samples of size n = 5 in
rows. Calc, Random Data, Normal. Generate 100 rows,
store in C1-C5, mean 10, SD 3.

� Calculate sample means: Calc, Row Statistics. Click Mean
under Statistic, select columns C1-C5, store results in C7.
Do sample SDs same way, selecting Standard Deviation and
storing in C8.
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Simulation continued

� Now calculate confidence intervals “by hand”. First get
“margin of error” for 95% interval as 1.96 × s/

√
5: Calc,

Calculator. Store result in C9, in Expression box type
1.96 * C8 / sqrt(5) (or find “square root” in the list of
functions). Click OK.

� Ends of confidence interval for each sample are mean minus
margin of error and mean plus margin of error, ie. C7-C9
and C7+C9. Use Calculator again, store in C11, C12.

� My results (selected):
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Simulation results

Row x-bar s +/- C10 C11 C12

1 10.1868 2.23416 1.95833 8.2285 12.1451

2 10.1366 1.47570 1.29351 8.8430 11.4301

3 8.9175 1.49579 1.31112 7.6064 10.2286

12 7.1230 2.77318 2.43080 4.6922 9.5538

13 10.1301 2.28851 2.00597 8.1242 12.1361

31 12.7054 2.02251 1.77281 10.9326 14.4782

32 11.0099 2.66603 2.33688 8.6730 13.3468

� Population mean 10, so confidence intervals should contain
10. Those from rows 1,2,3,13,32 do, those from 12 and 31
don’t.

� In my simulation, only 89 of 100 simulated intervals contain
10. Supposed to be 95% interval, but only about 89%.
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Fixing it up

� Simulations showed that using Chapter 6 procedure with s
not σ gave intervals that are too short.

� Previously got margin of error using 1.96 for 95% interval,
1.645 for 90% interval.

� Idea: make these numbers bigger to account for lack of
knowledge of σ.

� Large sample: sample SD s probably close to σ. Loss of
information small, adjustment small.

� Small sample: sample SD s might be far from σ. Loss of
information large, adjustment large.
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The t-distributions

� So for 95% confidence interval, margin of error calculated
with something other than 1.96, but exact number depends
on sample size.

� Correct number comes from t-distribution. Distribution
different for each sample size; traditionally labelled by
degrees of freedom (df), which is n − 1.

� Get number from table, Table D:
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t-table
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Using t-table to get t∗

� For sample size n = 5, df 5 − 1 = 4. Find 95% along bottom
of table, look up to 4 df, get 2.776. Much bigger than 1.96.

� Now, try n = 51. 50 df row, 95% column, 2.009. Much
nearer 1.96.

� With a very large sample, t∗ is very close to 1.96, eg. with
1000 df.

� Do other CIs same way: eg. 99% for n = 10, look in 99%
column, 10 − 1 = 9 df: t∗ = 3.250.
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Example

� When people buy bicycles, they often buy other accessories
too (helmet, water bottle, etc.) A store took a random
sample of 12 bike-buying customers, and found accessory
purchases to be (in $) 38, 65, 82, 114, 77, 19, 142, 93, 63,
107, 58, 76.

� Sample mean x̄ = 77.83, sample SD s = 33.51. n = 12, so
11 df. For 95% confidence interval, t∗ = 2.201. So interval is

77.83 ± 2.201
33.51√

12
,

from $56.50 to $99.12.
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t confidence intervals in Minitab

With data, can use Minitab. I entered the 12 numbers into
column C1. Then: Stat, Basic Statistics, 1-sample t. Select
column C1, ensure Confidence Interval checked and 95.0 in
box. Click OK. (Don’t need to give “sigma”.) Results:
T Confidence Intervals

Variable N Mean StDev SE Mean 95.0 % CI

C1 12 77.83 33.51 9.67 ( 56.54, 99.13)

a more accurate version of our calculation.
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Summary

� When σ not known, using procedure of Chapter 6 with s in
place of σ gives confidence intervals that are too short.

� Adjustment depends on sample size. Use t distribution with
df n − 1.

� Confidence interval for µ now

x̄ ± t∗
s√
n

,

where t∗ from table.
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Significance tests based on t distribution

� To continue bike-accessories example: at similar bike shop,
mean accessory sales are $90 per bike sold. Is there
evidence that accessory sales at this shop less?

� Test of significance. Population mean sales µ. Alternative
Ha : µ < 90, null H0 : µ = 90.

� Cannot do using previous test procedure because don’t
know σ. So calculate test statistic t using sample SD, and
get P-value from Table D.
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Bike-shop example

� H0 : µ = 90, Ha : µ < 90.
� Here, x̄ = 77.83 (correct side), s = 33.51. So:

t =
77.83 − 90

(33.51/
√

12)
= −1.26.

P-value is prob. of being below −1.26. But table only gives
positive values of t. t distribution is symmetric, like normal,
so P-value also prob. of being above 1.26.

� Go to table with 12 − 1 = 11 df. Look along 11 df row, and
find where 1.26 is – between 1.088 and 1.363. Look to very
top row: P-value between 0.10 and 0.15.

� Approximate, but accurate enough: not small, so do not
reject null. The population mean could be 90.
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1-sided and 2-sided P-values

As for z, but slightly different (because Table D different):
� If alternative has 6= (2-sided):

� if t < 0, ignore minus sign
� then P-value is twice what you get from Table D.

� If alternative has < (1-sided):
� if t > 0, P-value is large: do not reject null. “Wrong side”.
� if t < 0, ignore minus sign, get P-value from Table D.

� If alternative has > (1-sided):
� if t > 0, get P-value from Table D.
� if t < 0, P-value is large: do not reject null. “Wrong side”.
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t-test in Minitab

Minitab: data in column C1. Stat, Basic Statistics, 1-sample t
(as for interval). Click Test Mean, fill in 90. Change Alternative
to “less than”. Click OK:
T-Test of the Mean

Test of mu = 90.00 vs mu < 90.00

Variable N Mean StDev SE Mean T P

acc_sold 12 77.83 33.51 9.67 -1.26 0.12

P-value 0.12 not small, cannot reject null hypothesis. No
evidence that mean sales less than $90. (Note that 0.12
consistent with “between 0.10 and 0.15” from before.)
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Matched pairs

� When designing experiment, comparative usually better
(treatment vs. control etc.) – protects against other variables
affecting result.

� Two ways to compare:
� Matching: pair each subject with another similar subject.

One subject gets treatment, other control. Alternative:
get “before”, “after” measurements from each subject.

� Randomizing: divide subjects into 2 large groups at
random. One group gets treatment, other control.

� Think about matched pairs next.
� Think about two separate groups in §7.2.
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Matched pairs example

� Measurements come in pairs: each “before” with particular
“after”, each “treatment” with particular “control”.

� Example: “Apnea” is brief stoppage of breathing during
sleep. 13 premature infants given drug; measure “apneic
episodes per hour” before and after drug given. Data like
this:
Row before after

1 1.71 0.13

2 1.25 0.88

10 0.67 0.75

13 1.96 1.13

� All infants except #10 had fewer episodes after.
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Example continued

� Idea: differences, after minus before. Write µ for population
mean difference. Trying to prove drug reduces apnea, so
alternative hyp. µ < 0, null µ = 0.

� Test just 1-sample t-test on differences. Get 90% confidence
interval too.

� Minitab: Stat, Basic Statistics, Paired t. Want after minus
before, so after is 1st sample, before 2nd (illogical!)
Click Options, change Confidence Level to 90, Alternative to
“less than”.
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Example continued

Paired T for after - before

N Mean StDev SE Mean

after 13 0.984 0.833 0.231

before 13 1.751 0.855 0.237

Difference 13 -0.767 0.524 0.145

90% CI for mean difference: (-1.026, -0.508)

T-Test of mean difference = 0 (vs < 0): T-Value = -5.28

P-Value = 0.000

� P-value “0.000” very small, so reject null hypothesis; real
decrease in apnea. Same infants before and after, so
decrease due to drug.

� With 90% confidence, drug reduces apnea by between 0.5
and 1 episodes per hour. (Gives idea of size of drug effect.)
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Robustness of t procedures

� Mathematics of t procedures assumes that population has
normal-distribution shape (and therefore that mean, SD
measure centre, spread).

� But in practice, shape must be badly non-normal to cause
problems, particularly if sample large. More important to
have simple random sample. Guidelines:
� n < 15: don’t use t if clearly non-normal shape or outliers.
� 15 ≤ n < 40: beware only of outliers or strong skewness.
� n > 40: unlikely to be any trouble.
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Assessing appropriateness of t

� Assess using pictures of data (histogram, normal quantile
plot).

� For matched pairs, only differences matter; original variables
can have any shape.

� If an inference procedure doesn’t depend much on its
assumptions (as here), called robust.
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What to do if you can’t use the t procedures?

Two main approaches to choose from:
� transform the data so that the distribution is more nearly

normal. In Example 7.10 in text (p. 436), analysis is based
on logarithms of data values because data very
right-skewed.

� use a different test, such as those in Chapter 15, which do
not use the distribution shape at all (but not such good tests
if the distribution shape is close to normal).
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Guinea pig survival example

� Text table 1.8 has survival times for guinea pigs in medical
experiment.

� Very right-skewed (some very big values), so have doubts
about t procedures.

� Take logarithms: Calc, Calculator, type name (logdays) in
box for result, calculation is log(c1).

� Still right-skewed, but not nearly as bad. Sample size n = 72

should overcome this skewness. See pictures next 2 pages.
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Guinea-pig survival times
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Guinea-pig survival times, logs
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Guinea pigs continued

� Get Minitab to find confidence interval for mean of log data.
Stat, Basic Statistics, 1-sample t. Click Samples in Columns,
select logdays. Output like this:
One-Sample T: logdays

Variable N Mean StDev SE Mean 95% CI

logdays 72 4.77107 0.55956 0.06595 (4.63958, 4.90256)

� This is confidence interval for log-mean, so undo log. Use ex

button on calculator, or type into empty column and use exp

in Calculator to get 95% CI of 103.5 to 134.6 days.

� Compare less reliable CI of 116.1 to 167.5 from original data
(sample mean affected by outliers).
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Power and sample size for t tests

� How likely is t-test to reject null hyp. when it is false?
� Mathematics complicated (needs to account for replacing σ

by s), but can use simulation, or Minitab.
� Return to apnea example. With sample of 13 infants, how

likely is detection of decrease of 0.25 episodes/hour?
� Minitab: Power and sample size, Calculate power for each

sample size. Fill in sample size 13, difference −0.25 (lower
better). Need value for σ; use our sample SD 0.524. Click
Options, select alternative “less than”.
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Power example

Results:
1-Sample t Test

Testing mean = null (versus < null)

Calculating power for mean = null - 0.25

Alpha = 0.05 Sigma = 0.524

Sample

Size Power

13 0.4910

Only about 50-50 chance to detect this size difference.



- p. 284/335

Sample size

� How big a sample size would be needed to make this power
0.8?

� Power & sample size, 1-sample t as before. Click Calculate
Sample Size. Fill in power 0.80, difference −0.25. Check
sigma correct, check alternative (via Options):
Testing mean = null (versus < null)

Calculating power for mean = null - 0.25

Alpha = 0.05 Sigma = 0.524

Sample Target Actual

Size Power Power

29 0.8000 0.8055

Need 29 infants to have this chance of detecting a 0.25
decrease.
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Summary

� Significance test when σ unknown: replace σ by s, use t
distribution to get P-value. In practice, use software.

� With before-after measurements on same individual
(measurements on paired individuals), matched-pair
analysis: t procedures on differences (null: mean difference
is 0).

� In practice, with reasonably large sample(s), can use t
procedures with most data (even though mathematics
assumes data normal). Otherwise: transformation, sign test.

� When null hypothesis known to be false, can find chance of
(correctly) rejecting it: power. Can also find sample size
needed to obtain desired power against given alternative.
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Comparing two means (§7.2)

� Earlier: best experiments comparative. Compare by
matching or by randomizing.

� Example: teaching reading. Compare new method to
standard method. Can’t teach a child by both methods, so:
take random sample of 20 children, choose at random 8
children for new method (other 12 get standard method).

� Children taught by qualified people for 6 months, given
reading test at end. Record test score.

� Two separate samples, no pairing. Needs different analysis.
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Two means: notation

� Two populations. (Reading example: “all children taught by
new method”, “all children taught by standard method”.)

� Population 1: mean µ1, SD σ1. Population 2: mean µ2, SD
σ2.

� Don’t know any of these. Don’t care about actual values of
µ1, µ2 – care about how they compare. So think about
µ1 − µ2.

� Reading example: 1 is “new”, 2 is “standard”. µ1 = µ2 or
µ1 − µ2 = 0 means two methods equally good, µ1 > µ2 or
µ1 − µ2 > 0 means new better.
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Notation continued

� Collect samples from each population. Population 1: sample
size n1, sample mean x̄1, sample SD s1. Population 2:
sample size n2, sample mean x̄2, sample SD s2.
item Sample sizes can be same, but don’t have to be (8 and
12 in reading example).

� Don’t know population SDs σ1, σ2, so use sample SDs s1, s2

to estimate them, use t-distribution.
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The formulas

� To see why: p. 450–451 of the text. Actually t-distribution
only approx. correct, but usually good enough.

� Calculate

d =

√

s2
1

n1

+
s2

2

n2

.

� Base df on smaller sample size.
� Test statistic is

t =
x̄1 − x̄2

d

and confidence interval is

x̄1 − x̄2 ± t∗d.
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Reading example revisited

� Want to detect any differences between methods (new
method might be worse), so Ha : µ1 6= µ2. Null H0 : µ1 = µ2.

� Data, labelling 1 as “new”: n1 = 8, x̄1 = 77.13, s1 = 4.85.
n2 = 12, x̄2 = 72.33, s2 = 6.34.

� Thus d =
√

4.852/8 + 6.342/12 = 2.508. Test statistic
t = (77.13 − 72.33)/2.508 = 1.91. Using 8 − 1 = 7 df,
P-value between 0.05 and 0.10 (2-sided; double values in
Table D). Cannot quite reject null: not quite evidence that
new reading method makes difference.

� 95% confidence interval for difference in means, using
t∗ = 2.365:

77.13 − 72.33 ± (2.365)(2.508),

from −1.13 to 10.73.
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Reading example: Minitab

� Minitab: enter “new” scores in one column, “standard” in
another (worksheet reading).

� Stat, Basic Statistics, 2-sample t. Click “Samples in different
columns”. Select “new” as 1st column, “standard” as 2nd.
Ensure alternative “not equal”.
Two sample T for new vs standard

N Mean StDev SE Mean

new 8 77.13 4.85 1.7

standard 12 72.33 6.34 1.8

95% CI for mu new - mu standard: ( -0.5, 10.1)

T-Test mu new = mu standard (vs not =):

T = 1.91 P = 0.073 DF = 17

� Note different df, from formula page 460. Hence smaller
P-value, shorter CI than hand calculation.
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Conclusions

� P-value 0.073, no evidence of difference as before.
� Confidence interval from –0.5 to 10.1, includes 0. “No

difference” plausible, though suggests positive effect of new
method.

� Minitab gives both test and interval; choose as necessary.
� Sample sizes small in example (8 and 12); might not have

much power to detect useful difference. (Sample means
77.13 and 72.33 about 5 marks apart – raising reading
scores on average by 5 marks might be important.)
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Robustness of two-sample procedures

� Generally as for 1-sample t, only replacing “sample size”
with sum n1 + n2.

� Better to use equal sample sizes when possible.
� Overall conclusion: non-normality/outliers not a problem in

large sample sizes; worry mainly about outliers in
moderate-sized samples.

� Difficult to assess normality anyway in small samples.
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Power and sample size for two-sample t tests

� Will we be able to prove that new reading method has
effect? In general, how likely is rejection of null hyp. when it
is false? This is power.

� Minitab’s power calculation assumes equal sample sizes
and equal population SDs. To be safe, use smaller sample
size, larger SD.

� Reading example: sample sizes 8 and 12 (use 8), sample
SDs 4.85, 6.34 (so use 6.34 as guess of population SD).
Suppose that increase of 5 marks meaningful.
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Power in Minitab

� Stat, Power and Sample Size, 2-sample t. Select “Power for
each sample size”, type in sample size 8. Enter difference 5
(marks). Enter 6.34 for “sigma”. Click Options, ensure
Alternative is “not equal”, alpha 0.05.
2-Sample t Test

Testing mean 1 = mean 2 (versus not =)

Calculating power for mean 1 = mean 2 + 5

Alpha = 0.05 Sigma = 6.34

Sample

Size Power

8 0.3123

� Little chance of detecting this difference.
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Sample size

� How many children should be in each sample to get this
power up to 70% (0.70)?

� Minitab: Stat, Power and Sample Size, 2-sample t. Select
“Calculate sample size for each power value”, fill in 0.70 for
power, 5 for difference. Ensure “sigma” still 6.34, Options
correct:
2-Sample t Test

Testing mean 1 = mean 2 (versus not =)

Calculating power for mean 1 = mean 2 + 5

Alpha = 0.05 Sigma = 6.34

Sample Target Actual

Size Power Power

21 0.7000 0.7033

� Need 21 children in each group to get this much power.
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Summary

� When data not paired, use two-sample t-procedures to
compare two means.

� Hypotheses based on difference between population means.
� Sample sizes don’t have to be the same.
� These procedures generally robust (provided n1 + n2 large

enough).
� For power, use smaller n, larger s. For sample size, use

larger s. Answer gives number of individuals in each group.



- p. 298/335

Chapter 8: Inference for Proportions
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Inference for a single proportion (§8.1)

� Suppose that a new snack food is being tried out. 500
students sampled at random, and 71 of them said they
would definitely buy it.

� Idea: “success” (definitely buy), “failure” (wouldn’t). Count
successes in sample (71) or proportion (71/500 = 0.142).

� What can we say about proportion of all students who would
buy the new snack? (Confidence interval.)

� Company estimates new snack profitable if more than 10%
of all students buy it – evidence for this? (Significance test.)
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Significance tests for proportions

� Back in chapter 5, studied sampling distribution of
proportions: if we know the population proportion, can work
out what kinds of sample proportions we might get.

� Under usual assumptions for sampling, binomial
distribution describes number of successes, with success
prob. or population proportion p.

� Example: is there evidence that more than 10% of all
students would buy? Trying to prove this: alternative
hypothesis Ha : p > 0.10. Null hyp. H0 : p = 0.10.

� Now, if null hyp. true, know population proportion p: 0.10. So
number of people in sample who will buy has binomial
distribution with n = 500 and p = 0.10. Is observed value 71
(of 500) consistent?

� Simulate: Calc, Random Data, Binomial. Generate (say)
1000 rows of data, store in C1. Number of Trials 500,
Probability of Success 0.10.
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Simulation for n = 500, p = 0.10

� If p really 0.10, could observe 71 successes, but very
unlikely.

� So conclude that we observed 71 successes because
p > 0.10: reject null hypothesis in favour of alternative.



- p. 302/335

Test of significance in Minitab

� Mathematics: can calculate P-values exactly (binomial
distribution). Used by Minitab.

� Stat, Basic Statistics, 1 proportion. Click Summarized Data,
fill in number of trials (500), successes (71). Click Options.
Test Proportion 0.10, Alternative “greater than”:
Test of p = 0.1 vs p > 0.1

Exact

Sample X N Sample p 95.0 % CI P-Value

1 71 500 0.142000 (0.112597, 0.175711) 0.002

� P-value is very small (0.002), so reject H0 without question.
Can be almost certain that more than 10% of students will
buy.
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Confidence interval for proportion

� Continuing example: Minitab gave 95% confidence interval
of 0.1126 to 0.1757. So, from information in sample, believe
that between 11.3% and 17.6% of all students will buy this
snack food.

� Where did this come from?
� Recall connection between confidence interval and 2-sided

test. Value inside interval “plausible” – would not reject that
null hyp. But value outside not plausible, would reject.

� If we test H0 : p = 0.113 vs. Ha : p 6= 0.113 on same data,
get P-value 0.056, so do not reject H0; 0.113 inside CI.

� Test H0 : p = 0.176 vs. Ha : p 6= 0.176: P-value 0.046. Reject
H0 : p = 0.176. 0.176 outside CI.

� Consistent with Minitab’s CI.
� Minitab finds 95% CI by finding two values of p with P-value

exactly 0.05, but hard to do by hand!
� On next page, see how to do by hand.
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Test and CI without Minitab

Recall some stuff from §5.1:
� number of successes in simple random sample has binomial

distribution.
� sample proportion of successes has mean p and SD

√

p(1 − p)/n.
� If sample large, number and proportion of successes have

approx. normal distribution.
Use normal approximation to make our test and CI.



- p. 305/335

Test of significance

� Sampling distribution of sample proportion p̂ has mean p

and SD
√

p(1 − p)/n.
� As before, testing null p = 0.10 against alternative p > 0.10

with data of 71 successes in 500 trials, so
p̂ = 71/500 = 0.142.

� Use null hypothesis value of p to calculate test statistic:

z =
p̂ − p

√

p(1 − p)/n
=

0.142 − 0.1
√

(0.10)(0.90)/500
= 3.13

with 1-sided P-value (Table A) of 1 − 0.9991 = 0.0009.
Compare approx. 0.0009 and exact 0.002 from Minitab.

� Conclusion (either way): reject null and conclude that
p > 0.10.
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Confidence interval

� Problem: in
√

p(1 − p)/n, have no value for p. So use best
value we have, namely p̂. Hence formula:

p̂ ± z∗
√

p̂(1 − p̂)

n
.

� In example, 95% CI is

0.142 ± 1.96

√

(0.142)(0.858)

500
= 0.142 ± 0.031,

or from 0.111 to 0.173. This is approx.; compare exact 0.113
to 0.176.

� Usually have a large sample, so usually, as here,
approximation very good.
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Power and sample size for proportions

� As always with test of significance, want to know whether
interesting alternative has some chance of being detected
with current sample size (power), or what sample size
needed to be able to detect alternative of interest.

� To recycle snack food example: if in fact 12% of students
would buy product, how likely are we to reject null hyp.
p = 0.10 in favour of alternative p > 0.10 with sample of 500
students?
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Calculating power for test of proportion

Minitab: Stat, Power and Sample Size, 1 proportion. Fill in
sample size 500, alternative p 0.12 (this is the “true” 12%).
Leave Power blank (this will be calculated). Put in null
hypothesis p, 0.10, at bottom. Click Options, select Greater
Than.
Testing proportion = 0.1 (versus > 0.1)

Calculating power for proportion = 0.12

Alpha = 0.05 Difference = 0.02

Sample

Size Power

500 0.4434

Only sometimes detect this difference.
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Sample size for test of proportion

� How many students should we sample to have power 0.60
when in fact 12% of students will buy the product?

� Minitab: Stat, Power and Sample Size, 1 proportion. Fill in
power 0.60, alternative value p = 0.12, ensure Hypothesized
Value still 0.10. Leave Sample Size blank. Click Options,
ensure still Greater Than:
Testing proportion = 0.1 (versus > 0.1)

Calculating power for proportion = 0.12

Alpha = 0.05 Difference = 0.02

Sample Target Actual

Size Power Power

829 0.6000 0.6001

� Need to sample 829 students to have 60% chance of
rejecting null hyp. when p = 0.12.

� Each sample value doesn’t give much information (“success”
/ ”failure”), so need large sample to get much power.
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Summary

� Do significance test for proportion by asking: if null
hypothesis p correct, is observed #successes plausible or
not?

� Get P-value using binomial distribution, or normal as approx.
� Confidence interval for p: “undo” test by asking what values

of p would make you fail to reject null.
� Calculate power by giving null hypothesis value of p and

correct value of p, along with sample size.
� Given null hypothesis p, correct p and desired power, can

calculate sample size needed to achieve power.
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Inference for two proportions (§8.2)

� Often do comparative studies: have two groups (eg.
treatment and control) and want to compare groups (eg. test
null hypothesis that groups are same).

� If data are measured: calculate means, SDs, use methods
of §7.2.

� If data are success/failure: have two binomial counts of
successes, one for each group. What to do?
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Example

� Example: In a study of syntax texts, are references to
females more or less likely to refer to juveniles (“girl” vs.
“woman”) than references to males (“boy” vs. “man”)? Data
considered to be a random sample from all syntax texts.

� Data: for females, n1 = 60 of which X1 = 48 were juvenile;
for males, n2 = 132 of which X2 = 52 were juvenile.

� Thinking of “success” as a “juvenile” reference, number of
successes has a binomial distribution. Sample proportions
are p̂1 = 48/60 = 0.80 and p̂2 = 52/132 = 0.394.
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Getting confidence interval for p1 − p2

� Suppose X1 has a binomial distribution with n1 trials and
success probability p1, and X2 has also with n2 trials and
prob. p2.

� Then: X1 has mean n1 p1, variance n1 p1(1 − p1). Also
p̂1 = X1/n1 has mean p1, variance p1(1 − p1)/n1.

� Same applies for X2 and p̂2.
� Also, if n1 and n2 are large (only case we consider), p̂1 and

p̂2 approx. normally distributed.



- p. 314/335

Getting CI continued

� Can estimate population proportion difference p1 − p2 by
sample proportion difference D = p̂1 − p̂2.

� D is difference of normals, so its variance is sum of
individual variances:

p1(1 − p1)

n1

+
p2(1 − p2)

n2

.

� Don’t know p1 and p2, so replace by sample estimates to get
SE (standard error) of D as

SED =

√

p̂1(1 − p̂1)

n1

+
p̂2(1 − p̂2)

n2

.

� Then a confidence interval for p1 − p2 is

p̂1 − p̂2 ± z∗SED.
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CI for example

� Example data: p̂1 = 0.80, n1 = 60; p̂2 = 0.394, n2 = 132.
� Hence

SED =

√

(0.80)(0.20)

60
+

(0.394)(0.606)

132
= 0.067,

and for a 95% confidence interval, z∗ = 1.96, giving

0.80 − 0.394 ± (1.96)(0.067) = 0.406 ± 0.131,

from 0.275 to 0.537.
� We think the proportion of words for females that are juvenile

is bigger than the proportion of words for males that are
juvenile by between 0.275 and 0.537.

� This confidence interval contains only positive values, so we
believe that the proportion of juvenile words for females is
bigger.
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Confidence interval in Minitab

� In Minitab, select Stat, Basic Statistics, 2 Proportions. Select
Summarized Data (the bottom one). Fill in the number of
trials and the number of successes for each group. For our
data, there are 60 trials and 48 successes, then 132 trials
and 52 successes.

� If you want a confidence level other than 95%, click Options
and change it.

� This command will also give you a test of significance, which
you can ignore for now (we will learn it later). Output (same
result as by hand):
Sample X N Sample p

1 48 60 0.800000

2 52 132 0.393939

Estimate for p(1) - p(2): 0.406061

95% CI for p(1) - p(2): (0.274942, 0.537179)
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Test of significance for two proportions

� Confidence interval says “how far apart could proportions
be?”

� To see whether proportions believably the same, need a test
of significance, with null hypothesis H0 : p1 = p2. Base test
on

D = p̂1 − p̂2,

and reject null if too far from (above, below) zero.
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The mathematics

Now,

SED =

√

p1(1 − p1)

n1

+
p2(1 − p2)

n2

but if null is true, then p1 = p2 = p, say, so that SED becomes

SEDp =

√

p(1 − p)

n1

+
p(1 − p)

n2

=

√

p(1 − p)

(

1

n1

+
1

n2

)

.

Of course, don’t know p either, but estimate it using overall
proportion of successes:

p̂ =
X1 + X2

n1 + n2

.
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Test procedure

1. Calculate p̂ from data.
2. Calculate SEDp using p̂ in place of p.

3. Calculate test statistic z = ( p̂1 − p̂2)/SEDp

4. Get P-value from normal distribution.
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Example

� Data X1 = 48, n1 = 60, X2 = 52, n2 = 132 and alternative
p1 6= p2:

p̂ = (48 + 52)/(60 + 132) = 100/192 = 0.521;

SEDp =

√

(0.521)(0.479)

(

1

60
+

1

132

)

= 0.0778;

z =
0.800 − 0.394

0.0778
= 5.22.

� Off the end of the table, so the P-value is close to 2 × 0 = 0.
We can conclude that the two proportions are different.
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Minitab / discussion

� Minitab produces the same answer for our data. Select Stat,
Basic Statistics, 2 Proportions; click Summarized Data and
fill in the sample values. Click Options; make sure that
Alternative is Not Equal, and select Use Pooled Estimate.
Click OK. Get the output from before plus this:
Test for p(1) - p(2) = 0 (vs not = 0): Z = 5.22 P-Value = 0.000

� Same results as by hand.
� In this example, the sample proportions are very different, so

(not surprisingly) we could conclude that the population
proportions are different.

� In general, proving that population proportions are different
requires either
� sample proportions that are very different, or
� sample sizes that are very large.
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Summary of §8.2

� To compare population proportions p1 and p2, use difference
in sample proportions D = p̂1 − p̂2.

� Standard error SED =
√

p1(1 − p1)/n1 + p2(1 − p2)/n2.
� For CI, substitute sample proportions in SED; interval is

p̂1 − p̂2 ± z∗SED.
� For test, null is p1 = p2. Use SED with p replacing p1 and p2.
� Estimate p using overall sample proportion of successes.
� Test statistic z = ( p̂1 − p̂2)/SEDp, get P-value from normal

table.
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Chapter 9: Analysis of two-way tables
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Comparing multiple proportions (§9.1)

� We have been stressing the need to do comparative
experiments where possible. For instance: in type A people
who have survived heart attacks, is it helpful to offer
behavioral training as well as medical care?

� 290 patients randomized into 2 groups. Treatment group got
behavioral training plus medical care, while control group got
medical care only. Each person either suffered a 2nd heart
attack or not.

� For two proportions, can use methods of §8.2; for more,
need something new. (Compare this example using two
methods.)
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Contingency table

� Summarize results this way:
2nd attack No 2nd attack Total

Treatment 17 123 140
Control 29 121 150

Total 46 244 290

� For instance, 123 patients were in treatment group and did
not get a 2nd heart attack. Layout called contingency table.

� Research question: does treatment affect rate of 2nd heart
attacks?
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Percentages

� Starting point: percentages. Depending on data,
row/column/overall %’s may be best. Here, want % of 2nd
attacks for treatment & control groups.

� Treatment: 17/140 × 100% = 12%, control:
29/150 × 100% = 19%. Fewer 2nd attacks in treatment
group – but could be just chance.
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Inference for two or more proportions (§9.2)

� Alternative hypothesis: treatment has some effect (treatment
proportion of 2nd attacks different from control proportion).
Null hyp.: proportions same.

� In example, expect more 2nd attacks in control group
because 150 patients vs. 140. This true even if treatment
has no effect. But how many?

� Idea: 46 of 290 patients (0.1586) had 2nd attack overall. So,
if null hyp. true, expect 0.1586 × 140 = 22.21 in treatment
group, 0.1586 × 150 = 23.79 in control group.
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Expected counts

Work out expected numbers of patients without 2nd attacks in
same way, get this:
Expected counts are printed below observed counts

C1 C2 Total

1 17 123 140

22.21 117.79

2 29 121 150

23.79 126.21

Total 46 244 290
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Chisquare test

Now want one number summarizing this: small if observed and
expected all close, large otherwise. Right mathematics p. 610;
use Minitab calculation:
Chi-Sq = 1.221 + 0.230 +

1.139 + 0.215 = 2.805

DF = 1, P-Value = 0.094

At α = 0.05, can’t reject null hyp. Evidence in data set not
strong enough to conclude that treatment has effect.
Procedure called a chisquare test.
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Doing it all in Minitab

� Calculations above were actually Minitab output. First step is
to get table into Minitab. Just enter counts as laid out in table
(without totals): 17 and 29 in column C1, 123 and 121 in
column C2.

� Then: Stat, Tables, Chisquare Test. Select C1 and C2 as
columns containing table; get output as above.
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Another example

Altruism defined as “interest in welfare of others”.
Questionnaire developed to measure altruism – results low,
medium, high. Students from different majors studied:

Major Low Medium High

Agriculture 5 27 35
Family studies 1 32 34
Engineering 12 129 94
Education 7 77 129
Management 3 44 28
Science 7 29 24
Technology 2 62 64

Comparing many proportions. Analysis from Minitab (tidied):
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Expected counts

Expected counts are printed below observed counts

Low Medium High Total

Agric 5 27 35 67

2.87 30.98 33.15

Family 1 32 54 87

3.72 40.23 43.05

Engin 12 129 94 235

10.05 108.67 116.28

Educat 7 77 129 213

9.11 98.50 105.39

Manage 3 44 28 75

3.21 34.68 37.11

Science 7 29 24 60

2.57 27.75 29.69

Techno 2 62 64 128

5.48 59.19 63.33

Total 37 400 428 865
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Chisquare test

Chi-Sq = 1.589 + 0.512 + 0.103 +
1.990 + 1.684 + 2.787 +
0.377 + 3.803 + 4.268 +
0.489 + 4.692 + 5.288 +
0.013 + 2.503 + 2.236 +
7.659 + 0.057 + 1.090 +
2.206 + 0.133 + 0.007 = 43.487

DF = 12, P-Value = 0.000
4 cells with expected counts less than 5.0

� P-value is small; reject null hyp. Definitely difference in
proportions of low, medium, high among majors.

� How do majors differ? Compare observed and expected;
something interesting happening where very different:
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Why was H0 rejected?

� Science (row 6): more lows than expected.
� Education (row 4): more highs, fewer medium/low than

expected.
� Engineering (row 3): fewer highs, more medium/low than

expected.
According to questionnaire, education students more altruistic
than average, science and engineering students less so.
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Summary

� Often do comparative studies of two or more groups, yes/no
type answers.

� Contingency table to display results; percents to summarize.
� Calculate expected frequencies; leads to chi-square test:

null of all proportions same, alternative not all same. Reject:
conclude some differences among proportions.
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