
Chapter 1: Stats Starts Here (p. 2)

– Why am I here?
– Am I going to come out alive?  
– What can I hope to learn?
– how to understand the numbers that make our world
– how to organize things to make decisions about our world.
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Things vary:

– people are different
– can't see everything or measure it all
– what we can measure might be inaccurate.

How do we make sense of an imperfect picture of an imperfect 
world?

2



Chapter 2: Data (p. 7)

Airlines monitored for safety
and customer service. For
each flight, carriers must
report: 
– flight number
– type of aircraft
– number of passengers
– how late the flight was

(0=on time)
– any mechanical problems.
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Who, what, why, where, when, how?

– Who (individuals)?
– Flights                                             

– What (variables)? 
– Flight#, aircraft, passengers, how late, problems 

– Why these variables?
– Monitoring aircraft safety                             

– When?
–   Don't know                                                

– Where?
–  World-wide                                                  

– How?
–   Records from each flight when it lands                     

Identifier variables (identify individuals):
– flight number                                                    
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Categorical and quantitative variables

• Things we measure are of different kinds:
◦“What is your favourite colour” could be “red”, “green”, “blue”

etc.
◦“What level of disease do you have” could be “none”, 

“moderate”, “severe”
◦These are categorical: can only count how many individuals 

per category.
• What about “how tall are you”? Or “what temperature is it 

outside now?” 
◦Answers to these are numbers (with units): 5 ft 9 inches, 26 

degrees C. Quantitative variables.
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Kentucky Derby

Year Winner Margin Jockey Duration Track 
condition

2004 Smarty Jones 2 ¾ S. Elliott 2:04.06 Sloppy

2005 Giacomo ½ M. Smith 2:02.75 Fast

2006 Barbaro 6 ½ E. Prado 2:01.36 Fast

2007 Street Sense 2 ¼ C. Borel 2:02.17 Fast

2008 Big Brown 4 ¾ K. Desormeaux 2:01.82 Fast

2009 Mine That Bird 6 ¾ C. Borel 2:02.66

2010 Super Saver 2 ½ C. Borel 2:04.45

2011 Animal Kingdom 2 ¾ J. Velazquez 2:02.04

2012 I'll Have Another 1 ½ M. Gutierrez 2:01.83

2013 Orb 2 ½ J. Rosario 2:02.89

2014 California 
Chrome

V. Espinoza 2:03.66
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• Who (cases): winners of Kentucky Derby horse race 
• What (variables): 
◦ year (quantitative, a number)
◦ winning horse's name (categorical)
◦ margin of victory (quantitative; horse lengths)
◦ jockey's name (categorical)
◦ time to run the race (quantitative; minutes and seconds)
◦ track condition (categorical)

• How: obtained from textbook, Wikipedia
• Why: one of these
◦ because it looked interesting!
◦ To note any trends over time (eg. Are the winners running faster?)
◦ to see whether certain jockeys have won the race multiple times

• When: for races 2004-2014; collected by me this morning!
• Where: just the Kentucky Derby horse race (not any others).
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Chapter 3: Displaying and describing categorical data (p. 20)

In 1991 and again in 2001, a poll was
taken of 1015 adults about their
opinions on working parents. The
question was “considering the needs of
adults and children, what do you see
as the ideal family in today's society?”

1991 2001
Both work full time 142 131
One works full time, other part time 274 244
One works, other works at home 152 173
One works, other stays at home for kids 396 416
No opinion 51 51
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The 1991 data, bar chart:

– more people think that 
having one parent stay 
home with kids is ideal

– but all four options 
chosen by reasonable 
number of people

– StatCrunch: graphics, 
bar plot, with summary
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2001 data, pie chart

– Almost half of all 
people think that one 
parent ideally would 
stay at home with kids

– about a quarter of all 
people think that one 
parent working part 
time is ideal

– about equal numbers think that having both parents work full 
time or having one parent  work at home ideal

– StatCrunch: graphics, pie chart, with summary.
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– Bar charts

                  1991                                           2001

Hard to see much difference.
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Pie charts

Again, not much difference apparent. 

Ken's editorial on pie charts: they should never be used. Why? 
Because the eye judges angles badly, heights/distances much 
better (thus bar chart better than pie chart).
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Better: make bar chart for
each year, but put bars 
side by side:

– Slightly more had one
parent at home,
slightly fewer had
both parents working
outside the home. But
differences are small.

– StatCrunch: Graphics,
Chart, Columns.
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Contingency tables: two (or more) categorical variables (p.24)

recall surveys on attitudes to child care, above:

1991 2001
Both work full time 142 131
One works full time, other part time 274 244
One works, other works at home 152 173
One works, other stays at home for kids 396 416
No opinion 51 51

14



Reading a contingency table

– University records applications to professional schools:

Accepted Rejected Total
Males 490 210 700
Females 280 220 500
Total 770 430 1200

– 280 of the applicants were females and accepted.
– How many of the applicants were males who were rejected?
–                            210         

– How many females applied altogether?
–       500                              
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Percentages (p.25)

Accepted Rejected Total
Males 490 210 700
Females 280 220 500
Total 770 430 1200

– More males than females applied (and more people accepted 
than not), so difficult to compare numbers.

– Compute percentages. One way: percent of total (divide 
everything by 1200).

– joint distribution.
– Stat, Tables, Contingency, With Summary.
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Percent of total (p.26)
(take output from StatCrunch, copy, paste special)

Accepted Rejected Total
Males 490

(40.83%)
210

(17.5%)
700

(58.33%)
Females 280

(23.33%)
220

(18.33%)
500

(41.67%)
Total 770

(64.17%)
430

(35.83%)
1200

(100%)

• 41% of all applicants were males who were accepted.

• The row marked Total is marginal distribution of acceptance 
(64% of all applicants were accepted)

• The column marked Total is marginal distribution of gender 
(42% of all applicants were female).
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Conditional distribution

– Joint distribution is “out of everything”.
– Doesn't answer question “are more males than females 

accepted”?
– For that: out of males, what % accepted – row percents.
– Statcrunch: as before, but display: row percent.

Accepted Rejected Total
Males 490

(70%)
210

(30%)
700

(100%)
Females 280

(56%)
220

(44%)
500

(100%)
Total 770

(64.17%)
430

(35.83%)
1200

(100%)
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Table again:

Accepted Rejected Total
Males 490

(70%)
210

(30%)
700

(100%)
Females 280

(56%)
220

(44%)
500

(100%)
Total 770

(64.17%)
430

(35.83%)
1200

(100%)

– See males and females both add up to 100%.
– 70% of male applicants accepted, but only 56% of female 

applicants.
– Discrimination?
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Column percents

look like this:

Accepted Rejected Total
Males 490

(63.64%)
210

(48.84%)
700

(58.33%)
Females 280

(36.36%)
220

(51.16%)
500

(41.67%)
Total 770

(100%)
430

(100%)
1200

(100%)

– 63% of people accepted were males.
– 51% of people rejected were females.
– Doesn't answer our question here. 

20



Deciding between row and column percents

– Look for words “out of”: “out of females, what % accepted”.
– Look for “outcome”. Here, gender fixed, but acceptance or 

rejection in columns was outcome. So need row percents. (Ie. 
thing that is not outcome.)

– Whichever you use, getting conditional distribution. “If I look 
at females, what % are accepted” = conditional distribution of 
acceptance for females.
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Another example: airline punctuality

America 
West

Alaska Total

On time 6438 3274 9712
Delayed 787 501 1288
Total 7225 3775 11000

– what is the outcome variable?
–   On time/delayed in rows                                    

– do we want row or column percents?
–          Column percents                                                     

– which airline is more punctual (StatCrunch)?
– Data airline-delayed
– Stat, Tables, Contingency, With Summary
– select airlines as columns, appropriate Display
– need to Paste Special, HTML
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Cell format
Count
(Column percent)

America West Alaska Total
On time 6438

(89.11%)
3274

(86.73%)
9712

(88.29%)
delayed 787

(10.89%)
501

(13.27%)
1288

(11.71%)
Total 7225

(100%)
3775

(100%)
11000

(100%)
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Three categorical variables and Simpson's paradox

Professional schools example: also recorded acceptance and 
rejection separately for law school and business school:

Law accepted rejected total
males 10 90 100
females 100 200 300
total 110 290 400

Business accepted rejected total
males 480 120 600
females 180 20 200
total 660 140 800

What would be appropriate percents to find here, and what do we 
conclude? Think first about total for both schools.
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Professional schools (data school-accept)

- both schools (row percents)

More males than females accepted.
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- Law school:

- More females than males accepted
- different from total.
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- Business school:

- More females than males accepted
- in contrast to total again.
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Summary of results:

Male % 
accepted

Female % 
accepted

Law school 10 33
Business school 80 90
Overall 70 56

– More females accepted at each school.
– More males accepted overall
– how is that possible???
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Why we get this answer

– Look at where males tend to apply
– is it easy to be accepted there?
–       Business school; easy                                          

– Look at where females tend to apply
– is it easy to be accepted there?
–      Law school; difficult.                                          

• Acceptance depends mainly on where you apply, not on 
whether you are male or female. 

• In fact, females have larger acceptance rate, other things 
being equal. 

• If the same number of females applied to each school, the 
overall percent of females accepted would be higher.

• Original comparison of overall acceptance rates is apples vs. 
oranges, because it mixes up two different things (schools).
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Actually, the airline example also contains a Simpson's paradox; 
the extra variable there is “airport”. Percent delayed:

 

• Alaska Airlines more often late overall,
• but less often late at every single airport (makes no sense!)
• Explanation: America West flies more often into  Phoenix (easy

to be on time), but Alaska Airline flies more often into San 
Francisco/Seattle (hard to be on time).

• Airport makes a difference, so do not calculate averages over 
airport. Look at airports separately.
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Chapter 4: Displaying and summarizing quantitative data (p. 
49)

The breakfast cereal data

Study collected data on nutritional
content per serving (and other
things) of 77 different breakfast
cereals, so that different cereals can
be compared. 

Mostly quantitative variables.
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Histogram for calories per serving (p.50)

• most cereals have 
between 100 and 
120 
calories/serving.

• A few have a lot 
more or a lot less, 
but only a few.

• Shape symmetric: 
falls away from peak
about same both 
sides.
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Statcrunch

• Histogram: Graph, Histogram. Select Column (click on it), 
select Compute.

• Stemplot (in a moment): Graph, Stem and Leaf, Select 
Column, Compute.
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Stemplot (p.51)

• Alternative to histogram.
• Divide data values into stems and leaves, plot separately.
• Eg. data 17, 19, 21, stems as 10s (leaves as 1s):
◦17: stem 1, leaf 7.
◦19: stem 1, leaf 9.
◦21: stem 2, leaf 1.

• Plot all stems on left, add leaves to appropriate stem:

1: 7 9
2: 1

• You choose what units for stems.
• Cereal calories, StatCrunch used 10s for stems again:
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Cereal calories stemplot

Variable: calories

Decimal point is 1 digit(s) to the right of the colon.

Low : 50, 50, 50

 7 : 00
 7 : 
 8 : 0
 8 : 
 9 : 0000000
 9 : 
10 : 00000000000000000
10 : 
11 : 00000000000000000000000000000
11 : 
12 : 0000000000
12 : 
13 : 00
13 : 
14 : 000

High: 150, 150, 160
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– same shape as histogram (turned
on side)

– unusual values listed at top and 
bottom

– smallest value actually on plot is 
70, largest 140.

– All leaves are 0: 
– actually only measured to 

nearest 10
– couldn't see from histogram.
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Cereal potassium data histogram:

– Peak on left with 
long straggle of 
values to right

– Has right-skewed 
shape.

– Unlike calories, 
which was 
symmetric.

– Distribution of 
values with long 
straggle (tail) to 
left would be left-
skewed.
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Potassium stem-and-leaf:

Variable: potassium

Decimal point is 2 digit(s) to the right of the colon.

0 : 2233333333444444444
0 : 55555666666778999999
1 : 00000001111111222233444
1 : 667799
2 : 034
2 : 68
3 : 23

– Right-skewed shape shows up as long straggle at bottom of 
picture.

– Highest value (end of last line) 330 (not 3.3, not 33, but 330). 
– Lowest value (start of 1st line) 20.
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The mean and median (measures of “centre”; p.57)

– mean: “average”, add up values and divide by how many
– median: sort values into order, pick out middle one (or mean of

2 middle ones)

     data:      8, 12, 7, 5, 4

– mean (8+12+7+5+4)/5=7.2
– median: in order 4, 5, 7, 8, 12, so median=7
– with values 4, 5, 7, 8, 9, 12, median would be (7+8)/2=7.5.

– with n values, median is (n+1)/2-th value
– n=5, median=6/2=3
– n=6, median=7/2=3.5
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Mean and median from cereal data:

– Calories: median a little bigger than mean, 
but close together given nature of data

– Potassium: mean bigger than median, 
because distribution right-skewed.
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Another example:

Summary statistics: 
Column Mean Median

Exponential1 1.6502398 1.1666597

– Very right-skewed

– Mean much bigger 
than median
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With a lower or upper limit, there is “only one way” for a variable 
to go, especially if a lot of values close to the limit.

In the situations below, is there an upper or lower limit on the 
values of the variable? Which way would you expect the variable to
be skewed?

– waiting time to be served at a bank

–  lower limit 0; skewed right                                        

– number of employees in companies based in Scarborough

– lower limit 1; skewed right                                       

– scores on an easy quiz (marked out of 10)

–   upper limit 10; skewed left                                    
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Spread: interquartile range (p.61)

– 1st quartile Q1 has ¼ of data values below it and ¾ above

– 3rd quartile Q3 has ¾ of data values below it and ¼ above

– Find a quartile by taking lower (upper) half of data, and finding
median of that half.text to be copied

– Interquartile range is IQR=Q3-Q1. Larger = more spread out.

Example: 2, 5, 7, 7, 9

– lower half 2, 5, 7 (include middle), so Q1=5

– upper half 7, 7, 9 so Q3= 7

– IQR=7-5=2

– IQR not affected by extremely high or 
low values; same as median this way.
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Standard deviation (SD; p.63): another measure of spread

Illustrate with example. Data as above, mean 6:

Data Minus mean Squared
2 -4 16
5 -1 1
7 1 1
7 1 1
9 3 9
Total 0 28

So variance is 28/(5-1)=7 

and therefore SD is √7 = 2.65.
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Fire up StatCrunch and enter these numbers into a column:

1, 2, 3, 4, 5.

– Find the mean and median. Are they the same? Would you 
expect them to be?

– Yes; yes (symmetric, no outliers)

– Replace the number 5 with 10, and find the mean and median 
again. Are they still the same? If not, which is bigger?

– No; mean is bigger.

– Now replace the 10 with 20. What has happened now? Do you 
think the mean or median is the better choice for the “centre”?

– Mean is even further bigger than median. Mean pulled 
upwards by outlier; use median.
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Optional extra: repeat for IQR and standard deviation.
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Chapter 5: understanding and comparing data (p. 88)

Data 10, 11, 14, 15, 17, 19, 21, 28, 35:

– why is median 17?

–       n=9 median is (9+1)/2=5th                                

– find Q1 and Q3

– Q1=median of 10,11,14,15,17 = 14

– Q3=median of 17, 19, 21, 28, 35=21

– find interquartile range

–              21-14=7                                               

– find 5-number summary min, Q1, median, Q3, max.

–     10, 14, 17, 21, 35                                              
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Boxplot (p.89) 

Numbers from example above.

Box goes down the page, with scale on left.

– centre of box at median (17)

– top of box at Q3 (21) 

– bottom of box at Q1 (14) 

– calculate R=1.5 x IQR: 1.5(21-14)=10.5

– upper fence at Q3+R 21+10.5=31.5

– lower fence at Q1-R 14-10.5=3.5

– draw lines (“whiskers”) connecting box to most extreme value 
within fences

– plot values outside fences individually. These are suspected 
outliers and deserve to be investigated.
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StatCrunch boxplot (select “use fences to identify outliers”):
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In boxplot above, why do whiskers go down to 10 and up to 28? 
Investigate below.

• What is lower fence?

◦                  3.5                                                      

• What is smallest data value? Is it bigger (less extreme) than 
lower fence?

◦       10; yes                                                

• How far down should lower whisker go?

◦          10 (it is bigger than the lower fence)                      

• What is upper fence?

◦           31.5                                                             

• What are 3 highest data values?

◦         21 28 35                                                           

• What is biggest data value that is smaller (less extreme) than 
upper fence?
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◦          28                                                                

• How far up should upper whisker go?

◦          28                                                                 

• Are there any outliers?

◦        Yes, 35.                                                             
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Comparing distributions with histograms and boxplots (p.91)

Cereals classified by shelf where found in grocery store: 

– 1=top shelf

– 2=middle shelf

– 3=bottom shelf

Want to compare sugar/serving for shelves.

How about a histogram for each shelf, put results side by side?

(Histogram of sugars, Group By shelf, at bottom Columns per 
page = 3)
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– so where are the most sugary cereals?

– maybe on shelf 2? Hard to decide.

– how about side-by-side boxplots? (Boxplot of sugars, group by 
shelf. Don't forget Use Fences to Identify Outliers! No need for 
Columns per Page this time: only one plot.)
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Boxplots

Median definitely highest 
for shelf 2, lowest for shelf 
1.

– Easier to see than on 
histograms.

– Bonus: shelf 1 sugar right-
skewed, shelf 2 sugar left-
skewed.

– shelf 1 boxplot has longer
whisker above,

– shelf 2 boxplot has longer
whisker below.

– where did median go for 
shelf 2 sugar? (see over)
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… and why?

• Look at stemplot for shelf 2 sugar

• a lot of the cereals had sugars
exactly 12.

• so Q3 and median for shelf 2
sugars are the same.

• 21 cereals: median 11th largest, Q3 6th

largest.

• do the means tell the same story as the
medians?

◦  Yes; largest with largest, smallest with
smallest                                    

• does the skewness show up here as well?
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◦  Shelf 2 mean<median; shelf 1 mean>median, so yes.          

Data set “audio” contains lengths (seconds) of audio files sampled 
from an iPod. Obtain a histogram and a boxplot of the track 
lengths.

• There are at least 2 (maybe 3) outliers. Are they reasonable 
track lengths?

◦       Yes, eg, for classical music or “concept album”               
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Which summary of the track lengths do you prefer:

Summary statistics: 
Column Mean Std. dev.

file length 354.1 307.94753

Summary statistics: 
Column Min Q1 Median Q3 Max

file length 46 188 267.5 398 1847

Why?

•       5-number summary (distribution skewed to right)             
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Chapter 6: The standard deviation as a ruler and the normal 
model (p. 121)

Which is the better exam score?

– 67 on exam A with mean 50 and SD 10

– 62 on exam B with mean 40 and SD 12?

What do you say to these:

• 67 is better because 67 > 62?

◦     no, because mean is higher too.                                      

• 62 is better because it is 22 marks above the mean and 67 is 
only 17 marks above the mean?

◦        No, ignores different spreads.                                       

• Or....?

Key: z-scores.
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You look at StatCrunch report “location and spread under linear 
transformation”: 

http://www.statcrunch.com/5.0/viewreport.php?reportid=25026

Or click Explore, Reports, type title into box.

Summary:

– if you multiply/divide all data values by a constant, all 
measures of centre and spread multiplied/divided by that 
constant.

– if you add/subtract constant to all data values, measures of 
centre add/subtract that constant, but measures of spread 
unchanged.
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When you calculate a z-score as

z=
x−mean
SD

using the mean and SD of x, what are the mean and SD of z?

– First off, suppose x has mean 10 and SD 3.

– Then x-10 has mean 10-10=0 and SD 3.

– and z=(x-10)/3 has mean 0/3=0 and SD 3/3=1.

– this actually works no matter what mean and SD x has.

– Try it with x having mean -5 and SD 10, say.

No matter what mean and SD x has, z has mean 0, SD 1.

– Calculating a z-score sometimes called “standardizing”. Above 
says why.
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– Gives a basis for comparison for things with different means 
and sds.
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Those exam scores above:

Which is the better exam score?

– 67 on an exam with mean 50 and SD 10

– 62 on an exam with mean 40 and SD 12?

Turn them into z-scores:

– 67 becomes   (67-50)/10=1.70                 

– 62 becomes   (62-40)/12=1.83                 

so the  62    is a (slightly) better performance, relative to the 
mean and SD.
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Density curves and the normal model (p.129)

How big might a z-score typically be?

To answer that, need mathematical model to describe what's going
on.

Here's one: often run into data
with symmetric distribution and
no outliers, like this:

Red curve is normal distribution
model. Not a perfect match, but
pretty close.
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Mean and standard deviation on a normal distribution

– Mean (and median)
at peak (10)

– for SD: look at
where density
function stops
curving down and
starts curving out.
These are
“shoulders”: at 7
and 13.

– Distance from mean
to a shoulder is the
SD: 13-10=10-7=3.

– So mean is 10 and SD is 3.
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Z values and Table Z (p.135)

How much of a normal distribution is less than a value, more than 
a value, between two values?

Use Table Z, pages 1047-8 in text:

– first calculate z

– then look up z in table, which gives you fraction less.

– Area under whole normal curve is 1.

– Sometimes easier to figure what you don't want.
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Roma tomatoes have weights that have a normal distribution 
shape with mean 74 grams and SD 2.5 grams. What proportion of 
these tomatoes will weigh less than 70 grams?

Z=(70-74)/2.5=-1.6_____;

look up in table Z to get
0.0548_____

StatCrunch equivalent on right
(no need to standardize).

You should learn table and
StatCrunch.

(On exam we give you Table
Z.)
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What proportion of the Roma tomatoes in the previous question 
will weigh more than 80 grams? (Mean 74, SD 2.5.)

– z=(80-74)/2.5 =
_2.4_______

– Table: _0.9918_______

– so 1-0.9918= 0.0082 more.

Draw picture (as at right):
answer will be very small.
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What proportion of the Roma tomatoes of the previous two 
questions will weigh between 70 and 80 grams? (There are two 
ways to do this, both of which use the previous work.) StatCrunch 
first (gives nice picture):

Want all but the tiny white bits at the ends.
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Way 1 (easier to understand)

– 0.0548 less than 70

– 0.0082 more than 80

– everything else between: 1-0.0548-0.0082=0.9370.

Way 2 (easier to do)

– 70 as z-score is -1.60, table gives 0.0548.

– 80 as z-score is 2.40, table gives 0.9918.

– Subtract: 0.9918-0.0548=0.9370.

These both check with StatCrunch.
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What if z has 2 (or more) decimal places?

Example using Roma tomatoes again (mean 74, SD 2.5): 
proportion less than 77.4 grams?

– Z=(77.4-74)/2.5=1.36_______

– use column of table Z according to 2nd place, so z=1.36 gives 
_0.9131_____ (answer).

– If z has more than 2 decimals, round to 2, then use table.
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Getting values from proportions (p.139)

– Use Table Z backwards to get z that goes with proportion less

– Turn z back into original scale.

– How? z=(x−mean)/SD , solve for x

– Gives x=mean+(SD∗z)

– Examples coming up.
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At-term newborn babies in Canada have weights that follow a 
normal distribution, with mean 3500 grams and SD 500 grams.

– A baby is defined as being “high birth weight” if it is in the top 
2% of birth weights. What weight would make a baby “high 
birth weight”?

– 2% more = 98% less = 0.9800 less

– z = _2.05______

– weight = 3500_ + _2.05____*_500_=   4525  _____  grams 
(or more)

– A baby is defined as being “very low birth weight” if it is in the 
bottom 0.1% of birth weights. What weight would make a baby
“very low birth weight”?

– 0.1% less = 0.0010 less

– z = -3.09 (I picked the middle one, but any is good)

– weight = 3500 + (-3.09)*500 =   1955_ grams (or less)
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Is normal distribution is a good fit to data? (p.137)

Return to the cereal potassium data. 

Histogram and boxplot:

– distribution skewed right.

– look also at normal probability plot (QQ plot):
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– if normal distribution OK, blue
dots more or less follow
central line (straight)

– Curve or other systematic
deviation from line = not
normal

– Here, not normal.

– low values too bunched
together, high values too
spread out: skewed to right.
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Actual normal data:

– not perfectly straight

– but no obvious outliers or
curve

– normal distribution ok for
these data.
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Cereal calorie data:

– horizontal blue dots: calories
only measured to nearest 10

– high values maybe a little too
high 

– low values too low

– symmetric, but too many
outliers for normal.
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Cereal sugars:

– a lot of identical values (like
calories)

– otherwise reasonably close to
line

– normal probably not too bad.
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Cereal sugars histogram:

– histogram has a “hole”
between 7.5 and 10

– otherwise, not too far from
normal.
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68-95-99.7 rule (p. 133)

Sometimes can get a rough idea of normal proportions like this.

– about 68% of a normal distribution between mean +/- SD

– about 95% of a normal distribution between mean +/- 2 SD

– about 99.7% of a normal distribution between mean +/- 3 SD

Recall weight of Roma tomatoes: mean 74, SD 2.5 (grams)

– what weights will about 95% of them be between?

–    74-2*2.5=69 to 74+2*2.5=79                                         

– about what fraction of the weights will be between 71.5 and 
76.5 grams?

– 71.5 is mean minus ___1_ x SD, 76.5 is mean plus _1___ x 
SD, so answer is _68%_____.
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Variations

Again using mean 74, SD 2.5:

– about what
fraction of weights
will be more than
79 grams?

– 95%_ between
69 and 79

– 5%__ beyond
that

– 2.5% above 79
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– about what fraction will
be between 74 and 81.5
grams?

– 81.5 is __3_ Sds
above mean, 66.5 is
_3__ Sds below

– Between 66.5 and
81.5: 99.7%

– How much of that
between 74 and 81.5?

–   half                     

– How much of all
tomatoes between 74
and 81.5? 49.85%_
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– about what fraction
will be between 71.5
and 79 grams?

– How much between
71.5 and mean? 
Half of 68%: 34%

– How much between
mean and 79? half
of 95%: 47.5%

– How much between
71.5 and 79?

– 34+47.5=81.5%
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When you don't have a normal table (skip)

Proportion of standard normal distribution less than z is 
approximately 0.5z 4.4−z /10 , 0.99 for 2.2<z<2.6, 1 beyond.

(this for z positive – if z<0, draw a picture and flip it around). 

Roma tomatoes: mean 74, SD 2.5; proportion less than 77.4 gives
z=1.36. Proportion less approximately

______________________

Compare correct answer 0.9131. (Usually accurate to 2 decimals.)

Proportion less than 70: gives z=-1.60. Draw picture. Same as 
proportion more than 1.60. Proportion less than 1.60 approx: 
_______________________

Proportion more than 1.60 = proportion less than -1.60 

= _____________________ (compare exact 0.0548).
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Chapter 7: Scatterplots, association and correlation (p. 168)

– Previously, single variables on their own.

– Or one or more categorical variables.

– Now look at two quantitative variables.

– First tool: scatterplot.

– Plot values of two quantitative variables against each other.
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The airport in Oakland, California recorded the number of 
passengers departing in each month from 1990 to 2006. 
Scatterplot of passengers against time:
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Talking about association (p. 170)

– Direction

– Upward trend (positive), downward trend (negative)

– Form

– Straight line, curve

– Strength

– Strong (clear) relationship, moderate, weak
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With line:

–   upward         trend
(direction)

– close to    line           (line?)

– strength?   strong         
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Now look at month-by-month for 2004-2006 (months joined by 
lines):

– what is happening? Why?

–   Seasonal trends within
year

– why didn't we see it
before?

–  Mixed up with upward
trend 

–                                
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Correlation (p. 173)

– If the association is a line, can calculate a number to 
describe how near a line the points are: correlation 
(coefficient).

– Number between -1 and 1:

– 1 means perfect positive (uphill) association

– 0 means no (linear) association at all

– -1 means perfect negative (downhill) association

– in between means in between
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Some correlations

90



91



92



93



94



95



96



97



98



99



100



101



Scatterplot of marijuana use vs. other drug use for different 
countries:

– Describe what you see
on the scatterplot (form,
direction, strength).
Linear, upward,           

 moderate to strong        

– Does it make sense to
find a correlation here?
Why, why not?

– _yes, trend is straight
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– Can you conclude that marijuana is a “gateway drug”: 
marijuana use leads to use of other drugs? Why or why not?

– __no: correlation shows that relationship exists, but does not
show cause and effect

(My data set: “drug abuse”.)
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In a study of streams in the
Adirondack mountains, the
following association was found
between the pH of the water and
its hardness:

– Describe the relationship (3
things).

–  Form: curve; direction:
upward; strength: moderate

– Is it appropriate to use the
correlation to summarize the
relationship? Explain.

–  No: it's a curve not a line   
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Response and explanatory variables

– When you calculate a correlation, it doesn't matter which 
variable is x and which is y.

– Sometimes one variable is an “outcome” or response, and the 
other explains the outcome, an explanatory variable. 

– In that case, call the response y and plot it on the vertical 
axis of a scatterplot.
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Chapter 8: Linear regression – finding the best line (p. 198)

In math, straight line relationship looks like
y=abx

where x and y are variables, and a and b are numbers that 
describe what kind of straight line you have.

– a = “intercept”: value of y when x=0

– b = “slope”: if you increase x by 1, how much do you increase 
y by? 

– slope=2: increasing x by 1 increases y by 2

– slope=-3: increasing x by 1 decreases y by 3

– slope could be negative, if line goes downhill.

If you know the intercept and slope, you know the straight line. 

So aim: find intercept and slope of line that “best” describes data.
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Straight line only model: won't be perfectly accurate. But may be 
useful.
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Residuals

Go back to drug abuse data set.

Let y=other drug use, x=marijuana use. Let y be predicted other 
drug use.

Suppose model is y=−30.5 x .

For England, x=40, y=21, prediction y=−30.540=17.

England's actual drug use was 21, higher than predicted by the 
model: residual= y− y=21−17=4.

Idea: want “best” line to pass close to all the data, so want all 
residuals close to 0. 

So decide how good a line is by working out all the residuals, 
square and add up. (Like variance). Best line is one with sum of 
squared residuals smallest. (could try a bunch of candidate lines, 
work out all the residuals for each one, add up and compare. But 
can do better.)
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How to find the least squares line (p. 201)

– find means and SDs of both variables: x ,y , sx , s y and 
correlation r between them

– slope = r
s y
s x

– intercept = ȳ−(slope∗x̄)
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Drug abuse example

Summary statistics (from StatCrunch) 
Column Mean Std. dev.

Marijuana (%) 23.909091 15.552842

Other Drugs (%) 11.636364 10.239851

Correlation between Other Drugs (%) and Marijuana (%) is:
0.93410002

Calculate the slope and intercept of the least-squares 
regression line for predicting other drug use from marijuana 
use. (Answers: slope 0.615, intercept -3.066.)

– slope=(0.934)*(10.24/15.55)=0.62

– intercept=11.64-23.91*0.615=-3.06

– Check with StatCrunch. Check.
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Prediction:

– Predict “other drug use” for England (x=40), which was 
actually 21. How close is the regression line?

– regression line is ŷ=−3.066+0.615 x

– prediction is ŷ = -3.066+0.615*40=  21.53

– actual value 21

– residual = 21-21.53=-0.53
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How good is the regression? (p.209)

• If the scatterplot looks straight, correlation will describe this.

• Also can use R-squared = correlation squared, between 0 and 
1 (0 and 100%).

• R-squared generalizes to multiple regression where you have 
more than one x-variable.

• Percent of variability explained by regression. The response 
variable (y) is higher or lower, but how much of that is 
because it depends on the explanatory variable (x)?

• For drug abuse data, R-squared is 0.93412 =0.87. Pleasantly 
high.

• Values of “other drug use” vary quite a bit, but most of that 
variability happens because it depends on marijuana use.
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Car data 

– data on number of car
models. Here predict gas
mileage (miles per US
gallon) from the weight of
the car – expect heavier
cars to have a worse
(lower) mpg.

– first: scatterplot. Is
association straight?

– More or less a line

– correlation, -0.903 indicates
strong relationship.
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Regression for predicting MPG from weight (StatCrunch):

Simple linear regression results:
Dependent Variable: MPG 
Independent Variable: Weight 
MPG = 48.707495 - 8.3645999 Weight
Sample size: 38
R (correlation coefficient) = -0.90307083
R-sq = 0.81553692
Estimate of error standard deviation: 2.8508049

Parameter estimates: 
Parameter Estimate Std. Err. Alternative DF T-Stat P-Value

Intercept 48.707495 1.9536817 ≠ 0 36 24.931131 <0.0001

Slope -8.3645999 0.66302032 ≠ 0 36 -12.615903 <0.0001
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Note that R-squared, 0.816, pleasantly high.

You verify intercept and slope using the below (correlation is 
above):

Summary statistics: 
Column Mean Std. dev.

MPG 24.760526 6.5473138

Weight 2.8628947 0.70687041
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– Intercept 48.7, slope -8.4.

– Predicted MPG for car weight 2.5 tons?

– 48.7+2.5(-8.4)=27.7

– Predicted MPG for car weight 6 tons?

– 48.7+6(-8.4)=-1.7

– Why is this last one nonsense?

– Cannot be negative.

– extrapolation (bad)
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Plot residuals against
weight:

– down-and-up
pattern

– residuals for
weights around 3
tons are negative

– those for low & high
weights mostly 
positive

– residual plot shows 
curve: actual
relationship is
curved, not linear.

– So predictions we
made not
completely trustworthy.
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Not sure about that?

• Divide weights up into “light” (below 2.8), “medium” (up to 
3.5), “heavy” (above 3.5).

• In StatCrunch: Data, Bin. Select variable Weight, Use Cut 
Points, enter in box as 2.8, 3.5 with comma.

• This starts from quantitative variable (Weight) and produces 
categorical (Bin(Weight)).

• To plot residuals by group (defined by Bin(Weight)), use 
boxplot, over.

• Conclusion: medium-weight cars tend to have negative 
residuals, heavy-weight cars tend to have positive ones.

• When the residuals depend on anything, we have a problem.
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Boxplot of residuals by binned weight
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Random rubbish

– This residual plot, from
another regression, has
no pattern whatever.

– The regression it came
from has no problems.
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Doing regression

– start with a scatterplot

– if it does not look like a straight line relationship, stop (see 
Chapter 10).

– otherwise, can calculate correlation and also intercept and 
slope of regression line

– check whether regression is OK by looking at plot of residuals 
against anything relevant

– if not OK, do not use regression.

– Aim: want regression for which line OK, confirmed by looking 
at scatterplot and residual plot(s). Otherwise, cannot say 
anything useful.
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At a certain
university, for
each of
several years,
the total
number of
first years is
recorded, and
also the
number of
students
taking
“elementary
math
courses”. A
scatterplot
looks like
this:
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– Would you say that as the number of 1st years increases, the 
number of math students increases too?

– yes

– Would you consider fitting a regression line here?

– I guess so
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– For the above data, a
regression is done to
predict the number of math
students from the number
of 1st years. The residuals
are saved.

– There is a third column in
the data set, the year in
which the students were
counted. A plot of
residuals against year
looks like this:

– Does this suggest that the
regression was satisfactory, or not? If not, why not? 

– No: down and up (turns corner at 1996)
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– New calculus requirements in 1997 (saw from residual plot 
that there was a problem)
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Correlation and causation (p. 179)

 high correlation between #sodas sold in year and #divorces, 
years 1950-2010. Does that mean that having more sodas 
makes you more likely to divorce?

 Over that time, population increased, so changes in both 
variables are caused by that

 observe that smokers have higher blood pressure on average 
than non-smokers. Smoking causes higher blood pressure?

 Causation could be other way: high blood pressure causes 
smoking

 high correlation between #teachers and #bars for cities in 
California. Teaching drives you to drink?

 Size of city controls number of teachers and number of bars
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 high correlation between amount of daily walking and quality of
health for men aged over 65. Explanation?

 Maybe people warned about their health are walking more

 positive relationship between #ski accidents and waiting time 
for ski lift for each day during one winter at ski resort. Having 
to wait a long time makes people impatient?

  More people at the resort will cause longer lines for the lift 
and more congestion on the slopes

 Moral of the story:

 Correlation is not causation: cause and effect could be 
reversed, or there could be a 3  rd   variable driving the 
correlation
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Chapter 9: Regression Wisdom (p. 231)

Cars data again:

Scatterplot with fitted curve

– curve does seem to go
through points better

– as weight increases,
MPG does not decrease
so fast.
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Life expectancy 2004

How does the life
expectancy for a woman
depend on number of
children that woman has?
Data for 26 countries (“life_
expectancy_2004”).
Scatterplot:

– as births/woman
increases, life
expectancy decreases.

– Huge outlier top right.
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Regression with and without the outlier:

R-sq = 0.028277527
Parameter estimates: 
Parameter Estimate Std. Err. Alternative DF T-Stat P-Value

Intercept 72.602542 0.99717777 ≠ 0 24 72.808024 <0.0001

Slope 0.15004325 0.17954001 ≠ 0 24 0.83570926 0.4116

Without (how to do?)

R-sq = 0.63304984
Parameter estimates: 
Parameter Estimate Std. Err. Alternative DF T-Stat P-Value

Intercept 84.497094 1.9019459 ≠ 0 23 44.426655 <0.0001

Slope -4.4399288 0.70484996 ≠ 0 23 -6.299112 <0.0001
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– Completely different!

– What has changed (two things)?

–  Slope has become negative                                                

–    R-squared has increased from almost zero to 63%             

– The outlier is influential  because it has unusual value for 
explanatory variable. 
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How to do a regression omitting potential outliers

• Stat, Regression, Simple Linear.

• Fill in x as Births/Woman and y as Life Expectancy.

• What makes outlying point unusual? Its births/woman is way 
high. 

• Want to select countries where births/woman reasonable, say 
less than 5. 

• On Where box, click Build.

• Want to include countries where births/woman less than 5. 

• Under Columns, click Births/Woman and click Add Column. 
Using blue boxes to left, click or type < and 5. Click “Okay”. 
Check that right thing now in Where box.

• Click Compute as usual.
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Residual plot from regression with outlier:
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Do we trust the regression without the outlier?

Residual plot:

Is it a random scatter of
points?  yes                  
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Fitted line plot (without
outlier):

– Direction, form,
strength?
 Downward; line;
moderate to strong        

– What do you think Costa
Rica's births/woman
should have been (78.7
life exp, 24.9)?
   2.49                

– What do you think
happened to Costa Rica's
data?
   Somebody mis-
transcribed it                 
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Correlation with subsets of
data (p. 242)

Return to cars MPG/weight:

– cars seem to divide into
“good” gas mileage
(above 25) and “bad”
(below).

– What is correlation
between MPG and weight
for just the “good” cars,
or just the “bad” cars?
How does that compare
to correlation for all
cars?
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Correlations:

– correlation for just part of the data
is lower (closer to 0) than for all the
data.

– look at the data for just the
low-MPG cars (in scatterplot
above). How would you
describe that MPG-weight
relationship?
 Looks stronger than for all
cars                                 

– Do the answers to the right surprise you?   Yes; would have 
expected stronger correlation rather than weaker one              

Called the restricted-range problem: when one of the variables is 
restricted (you only look at some of the values), the correlation 
can be surprisingly low.
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Scatter plot showing separate regression lines for each group

– the regression lines
are quite different,
which would make
you expect to see a
higher correlation 
within each group.

– but you don't!

139



Chapter 10: Re-expressing data – Get it Straight! (p. 293)

– Take a simple function of the data (the response, in regression)
to achieve:

– make the distribution more symmetric

– make spreads of several groups more similar

– make a scatterplot more linear

– make spread in a scatterplot same all the way along
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Stemplot and boxplot of cereal potassium data. What would you 
like to fix?

outliers   

Variable: potassium 

Decimal point is 2 digit(s) to the right of
the colon. 

0 : 002233333333444444444
0 : 55555666666778999999
1 : 00000001111111222233444
1 : 667799
2 : 034
2 : 68
3 : 23
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Try log of potassium:
Variable: log(potassium) 

Decimal point is at the colon. 

2 : 7
3 : 022224444
3 : 66666777788889
4 : 0001112244
4 : 5555566666667777777788889999
5 : 11112234
5 : 56688

Is log of potassium more symmetric than potassium itself?

   yes                                                                                 
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What about boxplots of potassium by shelf?

How does spread
compare as centre gets
larger?

    It gets bigger           
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Try using log of potassium values:

Spreads are more equal now, less dependent on centre.
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Ladder of powers (p. 269)

Power Name Notes
2 Square of values Left skewed
1 Unchanged data
0.5 Square root Counted stuff
0 Logarithm % change matters
-0.5 -1/square root Rare
-1 -1/data Ratio “wrong way up”
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Cereal potassium data: log was good, but can we do better? Look 
at boxplots (read down to go down ladder)

original data (1)                                   log (0)

        square root (0.5)               -1/sqrt (-0.5)
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Where on the ladder of powers should we be to

make the shape symmetric?

        Power 0 or logarithm                                                              
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Car MPG vs weight
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Regression of car mpg vs weight:

– Relationship looks curved (shows up on residual plot). Also 
logically mpg cannot go below zero.

– Try log of mpg.
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log (power 0)
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– Still curved (also on residual plot). Must go further. Try -1 
power (negative reciprocal).

Which would you
choose? Why?

  We also tried power -2
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and it was no better than power -1, so stick with power -1, 
“gallons per mile”                               

152



– The original regression equation is

mpg =48.7 - 8.365 Weight 
For a car of weight 6 tons, predicted mpg was -0.89. Does this 
make sense?

–   No, since MPG cannot be negative.                                    
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Using the -1 power

– Using the -1 power, fit again to get
−1/mpg = 0 – 0.015 Weight

What is predicted mpg for car of weight 6 tons? Does this make 
some kind of sense?

– Predicted negative gallons per mile is 0-(0.015)(6)=-0.090      

–  Solve -1/MPG=-0.090: MPG =1/0.090=11.11                        

–   yes; plausible value for MPG.                                               
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Chapter 11: Understanding Randomness (p.300)

– What does “random” mean?

– These games are random:

– toss a fair coin, win if you get a head.

– roll a fair six-sided die: win if you roll a 6.

– play roulette at a casino: win if “red” comes up.

– In short term, unpredictable

– In long run, predictable:

– coin: should win about ½ of the time.

– die: should win about 1/6 of the time.

– roulette: 18 of 38 numbers are red, so should win 18/38 of 
the time.

– Computer random numbers generated by non-random method 
(!) but look just like random numbers.
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Random digit tables

– Easiest way to do simulation is with computer (eg. 
StatCrunch).

– Otherwise, can use tables of random digits 0-9: equally likely 
to be each digit, but next digit unpredictable, eg:

24655 67663 61607 42295

14635 62038 40528 12195

85757 38452 76349 78850
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Simulation: the dice game of 21

– Played with ordinary 6-sided die

– Each player keeps rolling die, totalling up spots, until:

– the player decides to stop

– the player's score goes over 21, in which case the player 
loses.

– Player with highest score of 21 or less is winner.

Suppose you are playing one opponent, who scores 18. How likely 
are you to win? (Strategy: keep rolling until you win or go over 
21.) Use random number table to simulate games. 
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Use table thus: random digit of 1—6 is die roll, 7—9 and 0 
ignored. Target: beat 18.

24655 67663 61607 42295

– 14635 62038 40528 12195

– 85757 38452 76349 78850

Trial 1 Trial 2 Trial 3
Random Total Random Total Random Total

2 2 6 6 6 6
4 6 7 1 7
6 12 6 12 6 13
5 17 6 18 0
5 22 3 21 7

lose win 4 17
2 19 win
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And so on. Here, won in 2 out of 3 simulations, but would do many
more to get accurate view of how likely we are to win. I did 1000 
simulations, and found the second player to have about a 72% 
chance of winning. 

Here's a bigger table, all done by simulation:

First player scores Second player wins
15 100%
16 95%
17 86%
18 72%
19 52%
20 29%
21 0%
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A more interesting question is when the first player should stop. If 
she stops once she gets to 16, she cannot go over 21, but she is 
very likely to lose. If she aims for 20, she is likely to win if she 
gets 20 (or 21), but she is very likely to go over 21 trying. 

(What looks like a good target for the first player to aim for?)
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First player strategy

– Several strategies for 1st player: “stop at 16 or more”, “stop at 
17 or more”,..., “stop at 20 or more”, “stop only at 21”.

– Do simulations of entire game, using each of these strategies 
for 1st player and “win or bust” strategy for 2nd. See how often 
each player wins. (2nd player automatically wins if first player 
goes over 21.)

– My results:

1st player's strategy 1st player wins 2nd player wins

Stop at 16 or more 29% 71%

Stop at 17 or more 39% 61%

Stop at 18 or more 48% 52%

Stop at 19 or more 50% 50%

Stop at 20 or more 45% 55%

Stop only at 21 29% 71%
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A simulation is not the answer

– Because it's based on random numbers (and random numbers 
can be weird), a simulation won't be completely accurate.

– Later, see it's possible to get exact answers in some cases, or 
to use approximations that are more accurate than simulation.

– Simulation is cheap and (fairly) easy, so do lots of trials.

– With lots of trials, answers from simulation will be accurate 
enough to give a good idea.
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The birthday month problem

Ask people one by one which month their birthday is in. How many
people might you have to ask to find two people with their 
birthday in the same month?

To simulate:

– arrange the months in a column

– sample, say, 20 months with replacement (2 people can have 
birthday in same month)

– count down columns until you find a repeated month.

Do by hand in StatCrunch.

– sample a bunch of months with replacement

– see how many simulated “people” are needed until a month 
appears for the second time
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Summary of birthday-month results (from R)

– Having to ask a lot of
people is possible but
unlikely

– Distribution is skewed to
right

– Most of the time, we will
only have to ask 2 or 3 or
4 people (surprising?)

164



Chapter 12: Sample surveys (p.314)

See this kind of thing all the time:

– a survey asking “if there were an election for mayor 
tomorrow, which candidate would you vote for?”

– with results based on responses from maybe 1000 people, 
claimed to be accurate “to within 3 percentage points 19 
times out of 20”.

How is that done, and why?

What would happen if we tried to survey everybody?
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Examine a part of the whole (p.315)

– Population = everyone we want to investigate.

– Need to use a sample that represents population (is like it in all
important ways).

– Imagine radio call-in poll about highway tolls. What kind of 
people might call in? Is that likely to be a representative 
sample?

– People with strong opinions; not at all representative.

– A sample that over-represents or under-represents some part 
of population called biased. Conclusions from biased sample 
cannot be trusted.
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How might we select a representative sample?

1. Carefully select individuals to match the population in every
way we can think of, eg. For highway tolls issue:

◦Males and females

◦the right mix of ages

◦right number of people living in each city/rural area

◦right mix of political opinions

◦etc, etc.

– Difficult to do.

– Might miss important way of matching population.

2. Select individuals at random.

◦Easy to do

◦Approximately represents population in all ways, 
including ones you didn't think of.
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Why does randomization work?

– Short term unpredictable, long term predictable

– Cannot predict which individuals are going to end up in sample

– With a large sample, sample will have approximately right 
proportion of males/females, urban/rural, old/young, etc., and 
anything else we didn't think of.
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Do you have enough noodles in your soup?

– stir soup, take (random) sample. Does that have enough 
noodles?

– doesn't matter how much soup you're cooking, as long as you 
stir it (population size doesn't matter)

– the bigger your sample of soup, the better your estimate of 
how much noodles it has.

– but if you sample too much soup, none left for your guests!
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Three keys for sampling (p.315--317):

1. Examine a part of the whole (sample)

2. Randomize (to obtain the sample)

3. It's the sample size (that is important).
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Populations and parameters, samples and statistics (p. 318)

– Suppose we want to know what proportion of the population of
the GTA are in favour of highway tolls.

– This is the population parameter. What we want, but unknown 
(except by asking everybody). Notation p .

– Take a sample, calculate proportion in favour in your sample. 
Sample statistic. Easy to figure out, but not the thing we want.
Notation p .

– Hope that sample statistic close to population parameter. If 
sample drawn using randomization, can work out how close 
(later).
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How can we draw a sample?

– Simple random sample (p.319): put
names of all members of population
in “hat”, shake, and draw out one by
one without looking.

– Every member of population equally
likely to be selected, independently
of who else in sample.

– Every possible sample equally likely.

Need to have a list of whole population (sampling frame).
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Drawing a simple random sample using random digit table

Suppose we have a population of 80 students, numbered 01—80, 
want a simple random sample of 6 of them. Use these random 
digits: 43623 33434 94776 15780 95603 64962 46971 95188.

43, 62, 33, 34 all ok

34 is a repeat: reject

94, 77 too big, reject

61, 57: ok

so sample is students numbered 43, 62, 33, 34, 61, 57.
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Stratified sampling (p.321)

– Population is in groups that could be quite different from each 
other (in terms of what's being measured)

– Take a simple random sample from each group, and combine 
to make overall sample.

– Why is this good?

– Fair representation of all parts of population.

– Therefore sample statistic should be closer to population 
parameter.
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Example of stratified sampling

Back to population of 100 students. 60 of them female, 40 male. 
Suppose issue is “do you plan to try belly-dancing in next year?” 
None of males will, but 50% of females will (thus 30% of whole 
population). Sample of size 10.

With simple random sample, might get a lot of females and over-
estimate interest in belly-dancing. Eg. 8 females and 2 males, 
what is sample proportion likely to be?

       50% of 8 + 0% of 2 = 4+0=4, 40%                                     

Or might have 2 females and 8 males. What is sample proportion 
likely to be?

         50% of 2 + 0% of 8 =1+0=10%                                        

In stratified sample, guaranteed  to have 6 females and 4 males in
sample. So sample proportion should be close to 30%.
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Drawing a stratified sample

Population of 100 students: 01-60 female, 61-99 and 00 male.

Use random digits: 18406 28903 75909 66389 28937 46983 
49652 37406 .

Draw stratified sample of 6 females and 4 males.

18, 40 females (2 so far)

62, 89 male (2 so far)

03 female (3 so far)

75, 90 male (now 4 males, don't sample any more)

96, 63, 89 reject (would be more males)

28 (4th female), 93, 74, 69, 83 (reject)

49, …, 23 (last 2 females).
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Cluster and multistage sampling (p.322)

How would you randomly sample 100 words from the textbook?

– simple random sampling: number every single word (!) and 
then sample from them.

– easier: randomly sample 10 pages first, then randomly sample 
10 words on each page. Why is that easier to do?

– not same as simple random sampling: if you select a particular 
page, other words on the same page more likely to be in 
sample.

– Called cluster sampling, or two-stage sampling.
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Multistage sampling

– Often hierarchy of clusters eg. chapter – section – sentence – 
word, and could choose:

– chapters

– section within chosen chapter

– sentence within chosen section

– word within chosen sentence

Called multistage sampling. At each stage, choice made by simple 
random sampling.

Choose cluster/multistage sampling for convenience, choose 
stratified sampling for accuracy.
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Things that can go wrong with sample surveys

– not getting Who you want (nonresponse): what to do?

–                                                       

– getting the question(s) right (how to ask)

–                                                        

– getting open-ended response

–                                                         

– sampling volunteers (how might that happen?)

–                                                          

– sampling badly but conveniently

– see above (Who)

– undercoverage

– not being able to sample certain parts of population.
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– Example:                                                        
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Chapter 13: Experiments and Observational Studies (p. 341)

How do you find out if exercise helps insomnia?

– look at a bunch of people, find out if they exercise and how 
much, ask them to rate their insomnia.

– Suppose the people who exercise more suffer less from 
insomnia. Can you conclude that people who suffer from 
insomnia should be recommended to exercise?

-   No: people who exercise more might have other health 
benefits that help with insomnia.                                         
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– This kind of study called observational study.

– Assesses association but not cause and effect (like correlation).

– Why not?

–                                                                    
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Observational studies (p. 342)

– Commonly used

– May help identify variables that have an effect

– but may not identify the most important ones.

– How do we know there is nothing else that makes a 
difference?

– Retrospective study “looking back”, like one above:

– measure exercise and insomnia from historical records.

– Prospective study “looking forward”:

– identify subjects in advance, collect data as events happen.

– Are data from the past even accurate?
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Which is better, retrospective or prospective?

– prospective: Outcome needs to be a common one (why?). 
Takes a long time.

– retrospective: easier to obtain enough data for rare events. 
Takes less time to do. More concerns about bias/confounding:
how do we know past data is accurate/complete/relevant?
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Experiments (p. 343)

How do we establish cause and effect?

– need to randomly choose some subjects and instruct them to 
exercise

– the other subjects are instructed not to exercise

– assess insomnia for all subjects.

Why is this better? How does it level out effects of other variables?

– choosing two groups at random means     evening out effects 
of all other variables                                                             
                                                                               

– if the groups end up unequal in terms of insomnia, it must 
have been the exercise that made the difference.          
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Terminology

– People/animals/whatever participating in experiment called 
experimental units / subjects.

– Experimenter has at least one explanatory variable, a factor, to
manipulate. 

– At least one response variable measured.

– Specific values chosen for factor called levels.

– Combination of manipulated levels of factors called treatment.

186



Variation of exercise/insomnia experiment: add diet

– three kinds of exercise: none, moderate, strenuous

– two different diets: fruit/veg, “normal”

– factors are:

– exercise, with 3 levels

– diet, with 2 levels

– 3 x 2 = 6 treatments (6 combinations of 2 factors)

– divide subjects into 6 groups at random.
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Principles of experimental design (p. 345)

1. Control

- control experimental factors by design

- control all other variables by randomization

2. Randomize

- “control what you can, randomize the rest” 

3. Replicate

- get many measurements of response for each treatment.

4. Blocking

- divide experimental units into groups of similar ones and 
sample appropriately (compare stratified sampling)
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Blocking (p. 346)

Suppose you have 8 six-year-old girls and 2 ten-year-old girls who
want to play soccer. How would you divide them into two teams?

– idea 1: use randomization to decide who goes on which team.

– but: what if the two older girls end up on same team? Is that
fair?

– idea 2: block A: the ten-year-old girls. Block B: the six-year-
old girls. Choose at random one girl from block A and four from
block B for each team.

– If some experimental units are different from rest, arrange in 
blocks so that units within block similar, in different blocks 
different. Then share out units from different blocks among 
different treatments.
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How do we know a treatment is effective? (p. 349)

– If the treatments are equally good, will the means for each 
treatment group be exactly the same? Why or why not?

–    Probably not; randomized groups won't be exactly same    

– If the mean for treatment 1 a lot bigger than mean for 
treatment 2, is that evidence of a difference between 
treatments? Why?

–    Yes; the groups were (approx) equal by randomization, so 
outcomes should not be   very   unequal, if the treatment has 
no effect. Therefore we conclude the treatment does have an
effect. 

– How big is “big”?

– Suppose two treatments are equally good. How big a 
difference in treatment means might we see, just by chance 
(due to randomization)? 
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– simulation: 2 treatments, both mean 20, SD 5, 10 subjects 
for each. How far apart could the means be?
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Statcrunch:

• Data, Simulate, Normal.

• Rows 10 (sample size 10), columns 100 (“many”).

• Fill in mean 20, SD 5 of normal data.

• Click Compute for Each Column, and type “mean(Normal)” into
the box.

• Compute. Should get a column of 100 sample means.

• Want to pick 2 at random, see how different they are, repeat 
many times. Data, Sample, select column mean(Normal).

• Sample size 2, number of samples 100 (“many”).

• Click Sample With Replacement.

• Click Compute Statistic for Each Column, type or build 
max("Sample(mean(Normal))")-
min("Sample(mean(Normal))"). Compute.

• Resulting column is kind of difference in means to expect. See 
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histogram below.
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• mean difference
could be eg. 3 
or 4 just by 
chance.

• What does it 
mean if we see 
a difference 
bigger than that
in our actual 
experiment?

               The treatment really makes a difference             
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Placebos (p. 352)

– A placebo is a “fake” treatment designed to look like a real 
one.

– Why is that important?

– Known that receiving any treatment will cause a subject to 
improve.

– Want to show that the “real” treatment is not just effective, 
but better than a placebo. Then have evidence that the 
treatment is worth knowing about.

– Can also use current standard treatment to compare with.

– Subjects getting placebo/standard treatment called control 
group.
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Blinding (p. 352)

– Suppose you participate in an experiment to see if a new 
herbal remedy for common cold really works.

– If you knew that you got the placebo, would that influence your
recovery?

– If you knew that you got the herbal remedy, would that 
influence your recovery?

– Best if:

– you don't know what you're getting

– the experimenter doesn't know what you're getting: Double-
blind so as not to bias results.

– In practice, design placebo to look just like herbal remedy, and 
label with eg. reference number so that no-one knows until 
after data analyzed which is which.
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The best experiments (p.353)

are:

– randomized

– comparative

– double-blind

– placebo-controlled.
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More factors (p. 355)

Recall (revised) insomnia experiment:

– three kinds of exercise: none, moderate, strenuous

– two different diets: fruit/veg, “normal”

– have subjects on all 6 combos of exercise/diet

– analysis tells us whether either (or both) of these variables 
have an effect on insomnia.
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Suppose:

– group 1: all the subjects on no exercise were also on normal 
diet

– group 2: all the subjects on moderate/strenuous exercise were 
on the fruit/veg diet. 

If group 2 comes out better, cannot tell whether exercise or diet 
deserve credit: exercise, diet confounded (p. 356).
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Ethical experiments (p. 357)

Idea of imposing treatments on subjects might be questionable:

– what if study effects of smoking on lung disease?

– would have to prevent some subjects from smoking, and make
some subjects smoke for duration of study (!!!)

There are some known unhealthy/dangerous things you cannot 
ask subjects to do. Also,

– giving a placebo when a best proven treatment is available is 
not ethical.

– subjects who receive placebo must not be subject to serious 
harm by so doing.

See Declaration of Helsinki, which governs experiments on 
human subjects:

www.wma.net/en/30publications/10policies/b3/index.html
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Chapter 14: From randomness to probability (p. 376)

In chapter 11, thought about randomness:

– These games are random:

– toss a fair coin, win if you get a head.

– roll a fair six-sided die: win if you roll a 6.

– play roulette at a casino: win if “red” comes up.

– go into Tim Horton's, win if they have your favourite donut.

– In short term, unpredictable

– In long run, predictable:

– coin: should win about ½ of the time.

– die: should win about 1/6 of the time.

– roulette: 18 of 38 numbers are red, so should win 18/38 of 
the time.
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- Tim Horton's? Don't know, but there is a long run prob (of 
having your favourite donut).
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Empirical probability (p. 377)

– Observe your game many times. (Reality/thought).

– Long-run fraction of times you win: probability of winning.

– Each single play you win or not, but probability guides actions.

Game: roll a (fair) die, win $3 if you roll a 6, lose $1 otherwise.

– prob. of winning 1/6 (prob. of losing 5/6)

– play game 6 times, expect to win once, lose 5 times

– total winnings 1 x $3 plus 5 x -$1, total -$2.

– on average expect to lose

– but: unpredictable in short term, might be lucky enough to win
(eg if roll 6 first time).
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Terminology

– collection of all things that can happen to you: sample space.

– toss a coin once, sample space is?

– roll a die once, sample space is?

– one of things in sample space called outcome.

– one possible outcome of tossing a coin is a Head.

– one or more outcomes together called event.

– roll a die, “even number of spots” an event, consisting of 
outcomes 2, 4, 6.

– each time we observe random event called trial.

– rolling die to see how many spots come up is a trial.
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Law of Large Numbers (p.378)

– how do we know that the relative frequency of some outcome 
actually will settle down to one value?

– Law of Large Numbers (mathematical fact): relative frequency 
of some outcome has a limit as number of trials becomes large

– Or, with many trials, the relative frequency and probability will 
be approximately equal.

Look at my StatCrunch report “Law of Large Numbers for 
Probability”.
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Empirical probability of a Head getting close to 0.5

– Toss a coin 10,000 times

– Keep track of proportion
of heads so far.

– That proportion appears
to be getting closer to
0.5 as #tosses gets
bigger.
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“Law” of averages (p. 378)

– toss a coin, get 5 heads in a row: “due” a tail?

– play casino game, lose 6 times in a row. “Due” a win?

–                      No!                                                       

– that would require coin/casino to remember previous results!

– you have the same chance of winning every time, 
independently of what happened before.

– How does that square with law of large numbers?

– law of large numbers says nothing about short-term.

– short-term unpredictable, long-term predictable

– if a short run of coin-tosses has a lot of heads, the long run 
that follows will have about 50% heads. The overall average 
dominated by long run, so will be about 50% heads also.
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Theoretical probability (p. 380)

– Sometimes can argue (in a mathematical model) what 
probabilities should be:

– toss a coin: two faces of a coin are just the same, so coin 
should be equally likely to land heads or tails, eg. P(H)=1/2.

– roll a die: in theory it is a perfect cube, so each of the 6 faces
equally likely to be uppermost: eg. P(6)=1/6.

– Draw a card: ¼ of the cards are spades, but each card 
equally likely.

– more generally, any time you have equally likely outcomes, 
prob. of event A is

P A=outcomes in A
total outcomes
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Rolling red and green dice and getting 10 spots total

– Sample space, red die first:

– S={(1,1),(1,2),...,(1,6),(2,1),...,(6,6)}

– all 36 possibilities equally likely (each prob 1
36

)

– Which of those possibilities add up to 10?

– 4 and 6; 5 and 5; 6 and 4; 

– How many of them are there?

– 3 possibilities

– So what is (theoretical) probability of total of 10?

– 3/36=1/12
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Personal (subjective) probability (p.381)

– What is probability that it will rain tomorrow? How does 
weather forecaster get “40%”?

– Forecaster uses experience to say that in “similar situations” in
past, it's rained about 40% of the time. 

– Personal probabilities not based on long-run behaviour or 
equally likely events. So treat with caution.
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Probability rules (p. 382)

1. A probability must be between 0 and 1 (inclusive).

2. Probability of the whole sample space is 1.

3. Addition rule: If events A and B have no outcomes in 
common (disjoint), prob. of either A or B is P(A)+P(B).

Roll a fair die once. 

– S={1,2,3,4,5,6}, equally likely, so each prob is 1/6. Why 
would any other value be wrong?

–        Only 1/6 six times will add up to 1                                

– Let A be event “5 spots or more”, A={5,6}, and B be event “2 
spots or fewer”, B={1,2}. What is prob that either A or B 
happens?

–      P(A)=2/6; P(B)=2/6; P(either A or B)=2/6+2/6=4/6       
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– Let A be event “5 spots or more”={5,6} as above, and C be 
event “even number of spots”={2,4,6}. Can you use the 
addition rule to find the prob of “either A or C”? What happens 
if you do? What is the correct answer?

try: P(either A or C):  P(A)=2/6;  P(B)=3/6; P(A or 
B)=2/6+3/6=5/6                                                        

But: “either A or C” means       2, 4, 5 or 6: P(A or B)=4/6?????    

Why the difference?     Outcome 6 in both events; counted twice; 
should not use addition rule; trust 4/6.                                        
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Probability of “not A”

To get the probability of an event A not occurring, written Ac , use
rule P Ac=1−P A .

– for our A={5,6} above, P Ac=1−2 /6=4 /6 .

– Does this make sense?

– outcomes in “not A” are         1, 2, 3, 4                                

– P(not A)=              4/6 ; check                                            
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General addition rule

– When two events A and B not disjoint (have outcomes in 
common), how to find P(either A or B or both)?

– found above that 1st addition rule gives answer that is too big. 
Fix up: 

– P(A or B or both)=P(A)+P(B)-P(both A and B)

– above: events A={5,6}, C=even number={2,4,6}

– Which outcomes make A and C both happen? What is P(both A 
and C)?
        6 ; 1/6                                                            

– Find P(A or C or both).

–      P(A)+P(C)-P(A and C)=2/6+3/6-1/6=4/6 check.             

Note that if the two events are disjoint, P(A and B)=0.
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Chapter 15: Probability Rules

Law and business school acceptance and rejection, again.

Law acc. rej. total Business acc. rej. total
males 10 90 100 males 480 120 600
females 100 200 300 females 180 20 200
total 110 290 400 total 660 140 800

– How likely is an applicant to law school to be accepted overall?
–         110/400=  0.28                                                           

– How likely is a female applicant to law school to be accepted?
–         100/300=0.33                                                   
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Second answer is conditional probability: we know the applicant is 
female, so only look at females.

Notation:
– let F be event that applicant female
– let C be event that applicant aCcepted
– we found P(C|F): accepted given female (0.33)

Not the same as P(F|C): now I know the applicant was accepted.
P(F|C)=100/110
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How to find a conditional probability

P B∣A=P(both A and B)
P A

– try with above example:
– Want P(C|F)
– P(both C and F)=100/400 (both female and accepted)
– P(F)=300/400

– so P(C|F)=
100/400
300/400

=1/3 .

400's cancel out and answer is 100/300.
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General multiplication rule

Turn conditional prob rule around:

P both A and B=P A×P B∣A

Prob that law school applicant is both male and rejected? Let 
A=male, B=rejected. Then 
– P(A) = 100/400
– P(B|A) = 90/100

– so P(both A and B)=
100
400

×
90

100
=

90
400

.

– also see from table: out of 400 applicants, 90 of them were 
males who were rejected.
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Another example

Law acc. rej. total Business acc. rej. total
males 10 90 100 males 480 120 600
females 100 200 300 females 180 20 200
total 110 290 400 total 660 140 800

– Randomly select two male applicants to law school. What is 
probability that they are both rejected?
– R1 event “1st one rejected”
– R2 event “2nd one rejected”
– P(R1 and R2)=P(R1) x P(R2|R1)=90/100 x 89/99
– (we know the first male applicant was rejected)
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… and another:

Law acc. rej. total Business acc. rej. total
males 10 90 100 males 480 120 600
females 100 200 300 females 180 20 200
total 110 290 400 total 660 140 800

For a randomly chosen applicant to business school, what is 
(a) probability that that person is either male or accepted? 
How does that relate to (b) the probability of being female and
rejected at business school?

- (a) define M=male applicant to bus school, A=accepted at bus 
school; want P(M or A or both)=  P(M)+P(A)-P(M and A)= 
600/800+660/800-480/800=780/800
- (b) 20/800                                                    
- how is (b) related to previous answer?
       (b) is “not (a)”                                                                    
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– If two events A, B are disjoint, they cannot both happen.
– Suppose A happens, then P(B|A) must be 0, whatever P(B) is.

– Suppose now C and D are independent events.
– Then P(D|C) equals P(D): knowing about C makes no 

difference. 
– Also, then P(D and C)=P(D) x P(C)  (“simple multiplication 

rule”).
– Some examples on next page.
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Examples of independence and disjointness

Suppose you are selected to take part in an opinion poll. Which of 
the following are independent, disjoint, or neither?

– A=your telephone number is randomly selected; B=you are not
home when they call.
–     independent                                                                  

– A=as selected subject, you complete the interview; B=as 
selected subject, you refuse to cooperate.
–     disjoint                                                                          

– A=you are not home when they call at 11:00am; B=you are 
employed full time outside the home.
–      Not independent.                                                          
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Turning conditional probabilities around

Suppose a restaurant has two (human) dishwashers. Alma washes
70% of the dishes, and breaks (on average) 1% of those. Kai 
washes 30% of the dishes, and breaks 3% of those. You are in the
restaurant and hear a dish break at the sink. What is the 
probability that it was Kai? Answer over.

Even though Kai washes less than half of the dishes, when a dish 
breaks, it is more likely than not that Kai broke it.
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Ken's easy way: make a contingency table (p. 405). The 
totals can be anything: I often choose 100 or 1000 for grand total.

Dishwasher
Dish breaks Kai Alma Total
yes 9 7 16
No 291 693 984
Total 300 700 1000

0.01*700=7; 0.03*300=9
P(Kai|dish breaks)=9/16
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Another one:

Three different airlines A, B, C operate night flights from LA to NY. 
On their night flights, airline A takes off late 40% of the time, B 
50%, and C 70%. My travel agent books me on a night flight from 
LA to NY at random (equal prob. for the three airlines).

1. what is prob. that I'm on airline A and late taking off?
2. What is probability that I'm late taking off?
3. I was late taking off. What is the prob. that I was booked 

on airline A?
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Make a table, pretending there are 300 flights altogether:
Late taking off On time Total

Airline A 40 60 100
Airline B 50 50 100
Airline C 70 30 100
Total 160 140 300

1.           40/300                                                                        

2.             160/300 =0.53                                                          

3.             40/160  =0.25                                                           
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“At least one”

Suppose I buy a lottery ticket each week for 3 weeks. Each ticket 
has probability 0.1 of winning a prize each week, independently of 
other weeks. What is the probability that I win at least one prize?

   P(not winning at all)=(1-0.1)x(1-0.1)x(1-
0.1)=0.9*0.9*0.9=  0.73                                                               
    P(win at least once)=1-0.73=0.27                                           

How does that probability change if I buy one ticket a week for 26 
weeks?

  P(no wins)=(1-0.1)^26=  0.06       P(at least one win)=0.94           
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What if my winning chances are 0.05 for the first week, 0.10 for 
the second, 0.15 for the third week?

    Same idea: P(no wins)=(1-0.05)(1-0.10)(1-0.15)=  0.73
P(at least 1 win)=1-0.73=0.27                                                   
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Binge drinking

44% of university students engage in binge drinking, 37% drink 
moderately, and 19% don't drink at all. Among binge drinkers, 
17% have been involved in an alcohol-related car accident, among
moderate drinkers, 9% have, and among non-drinkers, 0% have.

If a student has a car accident, what is the probability that they 
were a binge drinker? (over)
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Make a table. Pretend 100 students altogether:

Alcohol-related 
accident

Not Total

Binge drinker 7.48 36.52 44
Moderate 3.33 33.67 37
Non-drinker 0 19 19
Total 10.81 89.19 100

44*.17=7.48; 37*.09=3.33

Know that a student was in an accident (1st column); out of all 
students in 1st column, how many were binge drinkers? 
7.48/10.81=0.69.

Moral: only 44% of all students are binge drinkers, but those 
drinkers make up 69% of accidents.
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Chapter 16: random variables (p. 422)

Sometimes events have numbers attached to them:

– count how many heads in 3 coin-tosses

– total number of spots when you roll 2 dice

– the most cards of the same suit in 13 cards from a deck

– how much you might claim in a year on a car insurance policy

These numbers called random variables.
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Probability distributions

Each value of a random variable is an event, so each value has 
probability. List of values and probabilities called probability model.

Tossing 3 coins (this comes from binomial distribution, later):

# heads 0 1 2 3
Prob. 1

8
3
8

3
8

1
8

Rolling two dice:

Spots 2 3 4 5 6 7 8 9 10 11 12
Prob. 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Combining values of random variable:

3 coins:

# heads 0 1 2 3
Prob. 1

8
3
8

3
8

1
8

– How likely are we to get two or more heads?

– add up probs:      3/8+1/8=4/8=1/2                                   

– How likely to get at least one head? (2 ways)

– Use P(0 heads):     1-1/8=7/8                                             

– or directly:       3/8+3/8+1/8=7/8                                       

– What do all the probabilities add up to? Does this make sense?

–   1/8+3/8+3/8+1/8=1: one of those # heads must happen   
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The mean of a random variable (p. 423)

Here's a random variable, called X:

Value of X 2 3 4 5
Probability 0.1 0.2 0.4 0.3

– Mean not (2+3+4+5)/4=3.5 because 4 and 5 more likely than 
2 or 3.

– Have to account for more likely values when adding up:

– times each value by probability:

–    2(0.1)+3(0.2)+4(0.4)+5(0.3)=0.2+0.6+1.6+1.5=3.9       

– (Weighted average, weights sum to 1.)
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– Median of random variable is value of X where summed-up 
probabilities first exceed  0.5: 3 too small (total 
0.1+0.2=0.3), 4 is right (0.1+0.2+0.4=0.7), so median 4.

– Mean a little smaller than median: left-skewed.
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SD of a random variable (p. 425)

Another probability distribution:

Value of Y 3 4 5
Probability 0.1 0.8 0.1

– Mean is 4: why?

– Procedure for SD:

– subtract mean from each possible value

– square

– times each result by its probability

– add up: gives variance; square root to get SD

– Here: variance
3−42 0.14−42 0.85−420.1=0.100.1=0.2 .
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– SD= 0.2=0.45, small since Y most likely 4.
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Linear changes to a random variable (p.427)

– What does it mean to add a to a random variable? Multiply it 
by b?

– Take all the values and change them, while leaving the 
probabilities alone.

– Here's Y, with mean 4 and SD 0.45:

Value of Y 3 4 5
Probability 0.1 0.8 0.1

2Y looks like this. You check that mean now 8, SD 0.9.

Value of 2Y 6 8 10
Probability 0.1 0.8 0.1
     and Y+3 as below. You check that mean now 7, SD 0.45.

Value of Z 6 7 8
Probability 0.1 0.8 0.1
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Summary

– If you add a constant to a random variable, what happens to 
its mean? SD?

– Mean of (X+a) = mean of X, plus a

– SD of (X+a) = SD of X

– If you multiply a random variable by a constant, what happens 
to its mean? SD?

– Mean of bX = b times mean of X

– SD of bX = b times SD of X.
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Two (or more) random variables (p. 429)

Suppose X is #heads when tossing a coin 5 times, and Y is #spots 
when rolling a die once. What can we say about total “score” X+Y, 
which is a random variable too? 

Given: X has mean 2.5, SD 1.12; Y mean 3.5, SD 1.71.

– Probability distribution of X+Y is difficult to figure out.

– Example: P(X+Y=3)? Work out possibilities: X=2, Y=1; X=1, 
Y=2; X=0, Y=3. Find prob of each, add up.

– Mean of X+Y easy to figure out:

– Mean of (X+Y) is mean of X + mean of Y.

– here: mean total score = 2.5+3.5=6.
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SD of X+Y

– If X and Y are independent: 

– variance of (X+Y) = variance of X + variance of Y.

– two random variables are independent if knowing about one 
tells you about the other. Here, knowing coin toss result tells 
you nothing about die roll, so our X, Y independent.

– X has SD 1.12, Y has SD 1.71.

– In example, variance of total score = variance of X + 
variance of Y = 1.1221.712 = 4.18.

– So SD of total score is 4.18  = 2.04.
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Odd fact: SD of X-Y is same as SD of X+Y

– above example: difference in scores, coins minus die, has 
mean 2.5-3.5=-1, variance 1.122

1.712 , SD 4.18 = 2.04.

– Suggests: will score more on die than on coins on average, but
large SD says will at least sometimes score more on coins.

– How often? Hard, but easiest by simulation:

– coin score has binomial distribution, n=5, p=0.5

– die score has uniform distribution, a=1, b=6.

– Compute difference.

– results: diff greater than 0 _280__ times out of 1000

– difference in scores isn't normal, but pretend it is:

– for difference of 0, z=(0-(-1))/2.04=0.49, prob of greater 
than 0 is 1-0.6879=0.3121.
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Continuous random variables (p. 433)

– So far: our random variables discrete: set of possible values, 
like 1,2,3,... , probability for each.

– Recall normal distribution: any decimal value possible, can't 
talk about probability of any one value, just eg. “less than 10”, 
“between 10 and 15”, “greater than 15”.

– Normal random variable example of continuous.

– Finding mean and SD of continuous random variable involves 
calculus :-(

– but if we are given mean/SD, work as above (example over).
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Handling two normal distributions

Betty and Clara go for a swim every morning. The times it takes 
each of them to complete their swim have (independent) normal 
distributions. Betty has mean 10 minutes and SD 2 minutes, and 
Clara has mean 11 minutes and SD 1 minute. How likely is it that 
Clara will complete her swim first?

Let B be Betty's time, and C be Clara's. Then Clara will finish first if
the random variable C-B is less than zero.

– What are the mean and SD of C-B?

– mean is 11-10=1; variance is 12
22

=5 so SD = 5 =2.24.

– Turn 0 into a suitable z-score and find the answer

– z=(0-1)/2.24=-0.45, prob is 0.3264.
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How do you find SD of sum and difference if random variables are 
not independent?

– In this course, you don't.

– See p. 436—437 of text for gory details.
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Chapter 17: Probability Models (p.445)

A certain coffee shop has a Roll Up the Rim to Win promotion. 
15% of all cups win a prize:

– How many cups are you likely to have to buy before you get 
your first prize?

– How many prizes might you win if you buy 10 cups of coffee?

Reasonable to assume that each cup is a prizewinner or not, 
independently of other cups. Call act of rolling up the rim on one 
cup a “trial”.

Often encounter:

– Two possible outcomes “success” and “failure”

– Prob p of success does not change.

– Trials are independent.

246



Called Bernoulli trials.

Are these Bernoulli trials?

– Tossing a coin, success is “heads”.

– Defined success/failure, constant prob 0.5, independent: 
good                                                                                 

– Rolling a die, success is getting a 6.

–   Again good: P(success)=1/6, constant.                              

– Joe buys 1 lottery ticket every week for a year; success is 
winning a prize.

–   Success is “win a prize”, prob is (about) same each week; 
one week doesn't affect next                                               

– A person keeps taking a driving test; success is passing.

–    P(passing) should increase with each attempt: not 
constant, not a Bernoulli trial                                              
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– Toss a coin 10 times; success is getting 2 heads in a row (eg. 
HTHHTTTHHH is 3 successes) 

–   P(success) depends on last toss (or, trials not independent)

– Large population of people who agree or disagree with a 
statement; take simple random sample from population, 
success is “agree”. 

–   Trials not quite independent (if you draw a success, there 
are fewer left to draw from), but with a large population, can
act as if everything good.                                                   
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Recall:

A certain coffee shop has a Roll Up the Rim to Win promotion. 
15% of all cups win a prize:

– How many cups are you likely to have to buy before you get 
your first prize?

– The cup you get is randomly chosen, so independence and 
constant probability ok.

To win the first prize on 1st cup: prob 0.15.

On 2nd : fail then succeed: prob (1-0.15)(0.15)=0.1275

On 3rd: fail 2x then succeed: prob (1-0.15)(1-0.15)(0.15)=0.1084

More calculation:

– Prob 0.56 of finding winner within first 5 cups.

– Prob 0.09 of not finding winner within first 15 cups.
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Number of trials until 1st success: use geometric model (p.447) 
as above.

Mean number of trials to first success = 1/p, here 1/0.15 = 6.67.

Second question above:

A certain coffee shop has a Roll Up the Rim to Win promotion. 
15% of all cups win a prize:

– How many prizes might you win if you buy 10 cups of coffee?

Interested in number of successes in fixed number of trials. This 
different, uses binomial model (p.449):

– fixed number of trials n

– fixed prob of success p  on any one trial

– variable  number of successes
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Here, n=10, p=0.15. 

Reminder:

– Bernoulli trials

– Two possible outcomes “success” and “failure”

– Prob p of success does not change.

– Trials are independent.

Interested in #trials until first success: Geometric model

Interested in #successes in fixed #trials: binomial model.
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Binomial table

The link to Statistical Tables on course website includes table of 
binomial distribution probabilities. (You get these on an exam.)

In here, find chance of exactly k successes in n trials with success 
prob p.

Rolling up the rim: 10 cups, P(winner)=0.10

(n=10,p=0.10):

Prob of 0 prizes (k=0) is  0.3487            , 1 prize (exactly) (k=1) 
is  0.3874        2 prizes (exactly) (k=2) is    0.1937           . 

So chance of 2 prizes or less is   0.3487+0.3874+0.1937              

Chance of 2 prizes or more:  “not 0 or 1” 1-(0.3487+0.3874)        

(“Not 2 prizes or less” is 3 prizes or more.)
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What if p>0.5 in binomial table?

Suppose n=8 and p=0.7. What is the probability of

– exactly 7 successes?

– 7 or more successes?

Idea: count failures instead of successes.

P(success)=0.7 means P(failure)=    1-0.7=0.3                            

7 successes =  8-7=1       failure(s)

so look up n=  8  , p= 0.3   , k=  1    prob=  0.1977        which is 
answer we want.

7 or more successes =    7     or       8       successes

P(failure)=   0.3                

7, 8 successes =    1    or      0     failures
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prob we want is          0.0576+0.1977=0.2553                            
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Mean and SD of binomial distribution (p.451)

– Mean of number of successes in binomial distribution = np.

– SD of number of successes = np1− p . (Derivation: math 
box p. 451.)

For our example, n=10, p=0.15, so 

– mean = np = 1.5

– SD = np1− p = 100.151−0.15 = 1.13

Could get up to 10 successes (though unlikely), so distribution of 
number of successes skewed to right. (Also, lower limit 0.)
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Use StatCrunch to get probability histograms of binomial 
distributions (Stat, Calculators, Binomial):

256



– How does the shape depend on p?

– P<0.5 ? p>0.5 ? P = 0.5?

–              right-skewed; left-skewed; symmetric                    
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– What happens to the shape as n increases?

– shape becomes           normal                                             

– What does this suggest to do if n is too large for the tables?

–                   Normal approximation                                      
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If n too large for tables, try normal approximation to binomial.

Compute mean and SD of binomial, then pretend binomial  
actually normal: 

P(10 or fewer prizes in 100 coffee cups, 15% of which are 
winners)?

– # prizes binomial n= 100        p=   0.15       

– mean =    100*0.15=15                        , 

– SD =     √100(0.15)(0.85)    =   3.57                                             

– for 10 prizes, z=  (10-15)/3.57=  -1.4                                       

– prob of less is    0.0808                                                     

– exact answer (StatCrunch) 0.0994
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Works if n large and p not too far from 0.5:

– rule of thumb np≥10 and n1− p≥10

– can relax this a bit if p close to 0.5. (p.454)

– for n=100, p=0.15: np=15≥10 , n(1−p)=85≥10 . OK. 
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Continuity correction (see p.455 and note 5 there)

- Know about what this is, but won't need to do it on exam.

Problem:

– binomial distribution discrete

– normal distribution continuous

so “10 or fewer” on binomial really means “anything rounding to 
10 or fewer” on normal

ie. less than 10.5 coffee cup winners: 

z=(10.5-15)/3.57=-1.26, prob. 0.1038, much closer to exact 
answer 0.0994.

Compare “strictly less than 10 successes”:

– exact (binomial) 0.0551

– straight normal approx 0.0808 as above
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– with continuity correction use 9.5: z=(9.5-15)/3.57=-1.54, 
prob 0.0618.
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Poisson model (p.455): we skip.

263



Chapter 18: Sampling Distribution Models (p. 473)

If you toss a fair coin 100 times, how many heads might you get?

Simulate with StatCrunch: Data, Simulate, 
Binomial, n=100, p=0.5. Here 10 rows, 1   
column.

– number of heads not the same every time 
(sampling variability)

– usually between 40-60 heads

– usually not exactly 50 heads

– Do more simulations to get better idea.
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Number of heads in 100 tosses                 Proportion of heads
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What about 1000 tosses instead of 100?

– proportion of heads likely closer to 0.5

– number of heads might be further from half #tosses
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– shapes for n=100, n=1000 both normal

Exact answers (p. 474):

– number of “successes” and proportion of successes both 
(approx) normal if np, n(1-p) both at least 10

– For number of successes: 

– mean np

– SD np 1− p (saw this last time)

– For proportion of successes:

– mean p

– SD  p1− p/n (divide values for number by n)

– Our examples:
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n=100, 
p=0.5

n=1000, 
p=0.5

Number Proportion Number Proportion
mean 50 0.5 500 0.5
SD 5 0.05 15.81 0.02
– Shows sample proportion closer to its mean for larger n.

Opinion poll: 

– 1000 randomly sampled Canadians, 91% believe Canada's 
health care system better than US's.

– How accurate is that 91%?

– Sampling variability: another sample would contain different 
people, so its sample proportion p may not be 91%.

– Simple random sample, so #better binomial, n=1000, p=?

– wwwAssume (for lack of better) p=0.91.
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– How far from 91% might another sample proportion be?

– SD is 0.910.09/1000 = 0.0090.

– Based on this, how likely is a sample proportion over 95%?

– Check: np=910, n(1-p)=90 both at least 10; normal OK.

– z=(0.95-0.91)/0.0090=4.44; prob very close to 0.

– Most of the time, sample proportion between 0.91±2 0.0090 :
0.892 to 0.928.

– Or, sample proportion unlikely to be more than 2% away from 
truth, with n=1000 and p near 0.91.
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Sampling distribution for sample means (p. 482)

Lottery:

Winnings -1 2 10
Probability 0.9 0.09 0.01

How much might you win per play if you play many times?

Mean winnings from 1 play is (-1)(0.9)+(2)(0.09)+(10)(0.01)=

-0.62

(population mean). 

Law of large numbers: sample mean close to population mean for 
large enough sample. If you play 1000 times, you'll lose close to 
0.62 per play.
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What kind of sample means might you get for different sample 
sizes from this population? See below. (Recall: population skewed 
to right, because you have a small chance to win $10).
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Sampling distributions of sample mean (per play) for various 
sample sizes:
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Normal quantile plots:

Skewed to right but progressively less so as n gets bigger: more 
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and more normal.
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Where did normal come from?

– Not the population

– Must be the large sample and fact we look at sample mean.

Remarkable fact:

– From any population, sampling distribution of sample mean is 
approximately normal if sample is large.

– Central Limit Theorem (p.484).

Even in our very extreme population, began to work at about 
n=100.

Usually ok with much smaller n (eg. n=30 often big enough).
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Mean and SD of sampling distribution of sample mean (p.486)

– So sampling distribution of sample mean approx normal

– What are its mean and SD?

– Population has mean  , SD 

– Sampling distribution of sample mean has:

– mean  ,

– SD 


n
(see Math Box p 486-487).

– As n gets larger, variability of sample mean gets less, so closer 
sample mean will be to population mean (law of large numbers
again).

– Use this when want to know about sample mean might be.
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Calculations for sample mean (p. 488):

A sample of size n=25 is drawn from a population with mean 40 
and SD 10. What is prob that sample mean will be between 36 and
44? (Assume Central Limit Theorem applies.)

– Sampling dist of sample mean has mean =40 and SD
 /n=10 /25=2.

– 36 gives z=36−40/2=−2 , 44 gives z=44−40/2=2 .

– “Within 2 SDs of mean”: prob is about 95% (0.9544).

– Most of the time, sample mean between 36 and 44.

– Most of the time, sample mean no more than 4 away from 
population mean.
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Chapter 19: Confidence intervals for proportions (p. 504)

Recall: Opinion poll with 1000 randomly sampled Canadians, 91% 
believe Canada's health care system better than US's.

Sampling distribution of sample proportion has:

– mean p (unknown)

– SD  p1− p/n
For SD, use known n and best guess (91%) at p:

– SD approx 0.910.09/1000 = 0.0090.

– Sampling distribution approx normal: np≥10 , n1− p≥10
About 95% of the time, sample proportion p should be inside

 p−2 0.0090 , p20.0090= p±0.0180

that is, p and p should be less than 0.0180 apart.
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We had p=0.91 , so, about 95% of the time p should be between 
0.91-0.0180=0.892 and 0.91+0.0180=0.928.
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Confidence interval

(0.892,0.928) called 95% confidence interval  for p.

What does “95% of the time” mean (p. 507)? In 95% of all 
possible samples. But different samples have different p 's, and 
give different confidence intervals. 

Eg. another sample, with n=1000, might have p=0.89 , giving 
95% confidence interval for p of (0.870,0.910).

So our confidence in procedure rather than an individual interval.

280



Certainty and precision (p. 508)

We used 2*SD to get our 95% confidence interval. What if we use 
1*SD or 3*SD?

Confidence
level

Lower 
limit

Upper 
limit

68.0% 0.901 0.919
95.0% 0.892 0.928
99.7% 0.883 0.937

– if you want a shorter interval, you have to be less confident.

– if you want to be more confident in your interval, it has to be 
longer.

– no way to get a “certainly correct” interval – unless it is so long
as to be meaningless – always the chance that your statement 
about p will be wrong.
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Getting other confidence intervals for a proportion (p. 510)

How would we get a 90% interval? 80%?

– Sampling distribution approximated by normal (hence 1, 2, 3)

– Interval is p±z* p 1− p/n

– with z* from normal table is value where

– half the leftover is below -z*

– half the leftover above z*

– so amount of normal curve between -z* and z* is right %.

Find z* for 90% interval:

– leftover is 10%=0.1000

– half that is 5%=0.0500

– Table: z=-1.64 or -1.65 has 0.0500 less
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– z=1.64 or 1.65 has 0.0500 more (0.9500 less).

– so z*=1.64 or 1.65.

Handy table:

Confidence
level

z*

90% 1.645
95% 1.960
99% 2.576

– 1.96 a “more accurate” version of 2.
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Example

A city ballot includes an initiative that would allow casino 
gambling. A poll of 1200 randomly chosen voters finds 53% in 
favour, while a second poll of 400 randomly chosen voters finds 
54% in favour. In each case, find a 95% confidence interval for the
proportion of all voters in favour.

First poll:

SD of ¯̂p is   √0.53∗0.47 /1200 =   0.0144     

z* for 95% CI is   1.96              

95% CI margin of error =   1.96(0.0144)=  0.028                   

Interval from  0.53-0.028=0.502          to    0.53+0.028=0.558    
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Second poll:

SD of ¯̂p is  √0.54∗0.46 /400 =  0.0249                

z* for 95% CI is  1.96            

margin of error is   1.96*0.0249=  0.049           

interval from  0.54-0.049=0.491         to  0.54+0.049=0.589       

(0.028 and 0.049 are margins of error for the confidence intervals)

– polls differ in % in favour (sampling variability)

– First poll allows conclusion that majority in favour

– Second poll gives less precise interval (smaller sample).

95% CI for second poll was 0.481 to 0.589. What would a 90% 
interval be?
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SD of p̂ was    0.0249               

z* for 90% CI is    1.645             

margin of error is  0.0249*1.645=  0.041                

interval is from  0.54-0.041=0.499     to    0.54+0.041=0.581      

Compare with 95% CI.
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Determining sample size (p. 514)

Suppose we plan a survey. How big a sample?

– margin of error m=z* p 1−p/n determines how far CI goes 
up and down

– desired confidence level known: know z* (eg. 1.96)

– don't have a sample yet, but might have guess at p

– know how big we'd like margin of error to be (say m)

– then can solve for n:

n=
z*2 p 1− p

m2
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A study is to be carried out to estimate the proportion of all adults 
who have higher-than-normal levels of glucose in their blood. The 
aim is to have a margin of error on a 90% confidence interval of 
4% (0.04). How many (randomly chosen) adults should be 
surveyed? A pilot study shows that the proportion is about 20%.

Use the formula. z*=1.645, m=0.04, p=0.20:

n=
1.6452 0.201−0.20

0.042 =   270.6        ; sample   271      adults 

(round up).

Without a guess at p, use p=0.50 (worst case):

n=
1.6452

0.51−0.5

0.042 =    422.82        ; sample size should be  423  .

It pays to have a guess at p!
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Chapter 20: Testing Hypotheses about Proportions (p.530)

A newsletter reported that 90% of adults drink milk. A survey in a 
certain region found that 652 of 750 randomly chosen adults 
(86.93%) drink milk. Is that evidence that the 90% figure is not 
accurate for this region?

Difference between 86.93 and 90, but might be chance.

One approach: confidence interval. 

 p 1− p
n

= 0.0123, so

95% CI is 0.845 to 0.893

99% CI is 0.838 to 0.901

so now what?
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Better: hypothesis testing (p.530). Think about logic first by 
analogy.

Court of law

Decision
Not guilty Guilty

Truth Innocent Correct Serious error
Guilty Error Correct

– Truth (unknown)

– Decision (we hope reflects truth)

– based on evidence: does it contradict accused being 
innocent?

– “Presumption of innocence”

– “Beyond all reasonable doubt”.
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Hypothesis testing

Decision
fail to reject H0 reject H0

Truth H0 true Correct Type I error
H0 false Type II error Correct

– Null hypothesis H0 is “presumption of innocence”: given state 
of affairs is correct. In milk example, H

00 00

0 is p=0.90 (newsletter 
correct).

– Alternative hypothesis HA is that H0 is false (“guilty”). Need 
evidence (data) to be able to reject H0 in favour of HA . In milk 
example, HA is p not equal to 0.90 (newsletter wrong).

– Hypotheses (p. 531): ask yourself “what do I need evidence 
for?” That's HA  .

– Milk example: trying to prove that 90% not correct for this 
region, so
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– H0: p=0.90

– HA: p≠0.90

How to assess whether we believe H0 ?

– Assess the evidence

– Evidence is our data

– in particular: sample proportion p .

– P-value (p. 533): probability of p as far or further from H0 

than the value observed.

In our data, H0: p=0.90  and p=652/750=0.8693 . If  H0 true, 
value of p we might have observed approx normal, mean 0.90, 
SD 0.900.10/750 = 0.0110.

Prob of observing p below 0.8693 (further away from null):

– z=0.8693−0.9
0.0110

= -2.79; prob (Table Z) 0.0026.
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– Could have observed p above 0.90 too (same evidence 
against null), so P-value twice this, 0.0052. 
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“Beyond a reasonable doubt”

Is P-value of 0.0052 “beyond a reasonable doubt”? Says:

– a value of p like the one we observed very unlikely if
H 0 : p=0.90 true

– so either:

(a) we observed something very unlikely

(b) H 0 : p=0.90 isn't true after all.

– when P-value so small, prefer to believe (b): reject in favour 
of H A : p≠0.90 .

On the other hand, a P-value like 0.7789 not small. Says that if
H 0 true, result we observed entirely possible. Have not proved 

that H 0 true, but cannot reject H 0 . Some people say “retain 
H0”, or “data consistent with H0”. Ideas get at “we don't fervently 
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believe that H0 is true, but we cannot prove it wrong”.
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One-sided and two-sided tests (p. 538)

Our alternative was H A : p≠0.90 : two-sided since values of p too 
far above or  below 0.90 could make us reject H 0 . Suppose now
p had been 0.92. Then z=0.92−0.90/0.0110 = 1.82. P-value is 

prob of above, doubled: 2(1-0.9656)=0.0688.

Might have been looking for evidence that p was smaller than 
0.90, ie. H A : p0.90 . Two parts to getting P-value:

– are we on correct side? p=0.8693 is, p=0.92 is not.

– if on correct side, go to next step.

– if not on correct side, stop and declare H 0 not rejected (as 
for p=0.92 ).

– P-value is prob of less. For p=0.8693 that is (z=-2.79) 0.0026.
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Similar idea for other kind of one-sided alternative, like
H A : p0.90 :

– on correct side? p=0.8693 is not, p=0.92 is.

– if on correct side, go to next step

– if not ( p=0.8693 ), stop and declare H 0 not rejected.

– P-value is prob of greater. For p=0.92 , that is (z=1.82)
1−0.9656 = 0.0344. 
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When doing a test (p. 541):

– always state the P-value. Enables reader to draw own 
conclusion about truth or falsity of H 0 .

– follow up (particularly when you want to reject H 0 ) with a 
confidence interval. Enables reader to get idea of size of 
parameter (effect size) and hence whether result is important 
(makes practical difference) vs. statistically significant (unlikely
if null hypothesis is true)

How small is small (for a P-value)?

– think about how plausible the alternative is

– if alternative is implausible, need very strong evidence (very 
small P-value)

– if alternative is plausible, weaker evidence (larger P-value) 
would do
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– think about how costly or dangerous rejecting H 0 is

– eg. if rejecting H 0 would mean rebuilding a factory
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The rest of the way:

- chapter 21 today

- skip chapter 22

- chapter 23 (inference for means) on Friday

- chapter 24 (comparing two means) next Tuesday

- chapter 25 (paired data) next Friday

- then, done!
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Chapter 21: More about Tests (p. 554)

– null hypothesis has to give a parameter value like H 0 : p=0.7 .

– alternative has to say what you are trying to prove like
H A : p≠0.7 . (two-sided)

– Kind of alternative you use depends on exactly what you want 
to prove:

– is p different? (2-sided)

– is p larger?  (1-sided)

– is p smaller? (1-sided)
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Example: at a small computer peripherals company, only 60% of 
the hard drives produced pass all the performance tests the first 
time. Management recently invested a lot of resources into the 
production system. A sample of 100 hard drives produced recently
found that 71 of them passed all the performance tests the first 
time. Did the investment help?

– let p = proportion of all hard drives produced recently that 
pass performance tests first time.

– Looking for evidence that investment helped, ie. 

H A :  p>0.60                  .

– Null has to give value for p: H 0 : p=0.60  .

– SD of p=0.600.40/100 = 0.0490.

– 1000.6=60 and 1000.4=40 both at least 10: normal approx 
OK. (Not usually a problem.)

– Sample gives p̂=?  71/100=0.71                             .
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– Test statistic =     z=(0.71-0.60)/0.0490=  2.24                          

– On which side? Correct side-observed 0.60 successes or more  

– P-value for z= 2.24      = prob of   above            (Table Z):  
0.0125           

– If p=0.60 correct,  prob. 1-0.9875=0.0125               to have 
observed as high as p=0.71

– so  reject                 H 0 and conclude investment    has       
helped.
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Compare:

– prob of H 0 true, if observe data like this: no.

– prob of this kind of data, if H 0 true: yes, P-value.

Reason: H 0 either is true or false, so can't talk of its prob.

Previous example:

- H 0 : p=0.6

- H a : p0.6

Suppose now p=0.63 .

Then z=0.63−0.6/0.0490 = 0.61, with P-value 0.2709

Data not that unlikely if H 0 true, so cannot reject H 0 .
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– have not proved that H 0 correct

– have only obtained the kind of data we would have seen, if
H 0 were correct

– so justified in acting as if H 0 were correct.

What if p̂=0.55 ?  less then 0.6, wrong side, don't reject H 0 .

Idea: if investment helpful, would have had more than 60% of 
hard drives work first time.
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Alpha (p. 561)

– How to decide whether P-value small enough to reject H 0 ?

– Choose  (alpha) ahead of time:

– if rejecting H 0 an important decision, choose small  (0.01)

– if seeing whether any evidence at all, larger  (0.10)

– “default”  0.05.

– Reject H 0 if P-value less than the  you chose.

With =0.05 in above examples:

– p=0.71 : P-value 0.0125: reject H 0 : investment has helped

– p=0.63 : P-value 0.2709: do not reject H 0 : no evidence that 
investment has helped.

With =0.01 , even p=0.71 (P-value 0.0125) not strong enough 
evidence to conclude that investment has helped.
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Tests and Cis (p.565)

We do later (with inference for means).
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Example of hypothesis test for proportion (ex. 20.28, edited)

A study of acid rain and trees in Hopkins Forest found that 25 of 
100 (randomly selected) trees had some kind of damage from acid
rain. This is different from the 15% quoted in a recent article. Is 
the 15% figure wrong for the Hopkins Forest? Use α=0.05 .

– Parameter:

– p=proportion of all trees in Hopkins Forest damaged by acid 
rain                                                    

– Hypotheses:

– alternative  H a : p≠0.15    (2-sided)                                      

– Null?         H 0 L p=0.15                                                         

– SD of p̂ ?     √(0.15)(1−0.15)/100  =   0.0357                               

– Test statistic:     z=(25/100-0.15)/0.0357=  2.8                         
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– Probability of more extreme?  1-0.9974=0.0026                     

– P-value:   0.0026 x 2 = 0.0052                                              

– Conclusion:

–   reject       H 0 , conclude   the article's value of p=0.15 of 
trees damaged by acid rain is wrong for the Hopkins Forest   

– Follow up with 95% confidence interval: (0.175,0.343)

309



Making errors (p. 567)

Decision
fail to reject H0 reject H0

Truth H0 true Correct Type I error
H0 false Type II error Correct

– Type I error: reject H 0 when it is true

– jury convicts innocent person

– healthy person diagnosed with a disease

– future patients get a useless treatment

– Type II error: fail to reject H 0 when it is false

– jury fails to convict guilty person

– sick person not diagnosed with disease

– future patients do not get useful treatment
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– Prob of type I error is  (eg. =0.05 )

– Prob of type II error called  (beta)

– eg. H A : p≠0.3 but need to know what p actually is to find 

– if p far from 0.3, should be easy to reject H 0 (  small)

– if p close to 0.3, could be hard to reject H 0 (  large)

– Prob of not making type II error called power ( 1− ). (p. 568)

Want to have power large enough to have decent chance to reject 
null if p “interestingly” different from H 0 value.
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Example: suppose we have sample size 100. How likely are we to 
reject H 0 : p=0.3  in favour of H A : p0.3 if p is really 0.4, using
=0.05 ?

Simulate. Steps:

– simulate a bunch of binomials with n=100, p=0.4 (true 
distribution)

– turn each into sample proportion (divide by 100)

– calculate z for each (using H 0 : p=0.3 )

– calculate P-value (2-sided) for each using StatCrunch function 
“pnorm”

– count how many of those P-values < 0.05.
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  My simulation (some):
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Results 

- Stat – Tables – Frequency – select column “reject” -- compute 
frequency and relative frequency.

Frequency table results for reject: 
reject Frequency Relative Frequency

false 378 0.378

true 622 0.622

    

My power about 0.62. If that's

too small, larger sample size needed.
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Chapter 22: Comparing Two Proportions (p. 585)

2006/7 homicides:

Shooting Other Total %shooting

London 29 138 167 17.37

Toronto 72 82 154 46.75

– What can we say about the difference in proportion of 
homicides by shooting in the two cities (thinking of 2006/7 as 
a random sample of all years)?

– Best guess at difference is 0.4675-0.1737=0.2938. 

– But how variable is that from year to year?
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SE of difference in proportions (p.587)

– Let p1 be proportion of homicides by shooting in Toronto

– Let p2 be proportion of homicides by shooting in London

– SE  p1= p11− p1

n

– SE  p2= p21− p2

n

– SE  p1− p2 ? variance of difference is sum of variances:

– SE  p1− p2= p1 1− p1

n

p21− p2

n
=D , say.

– then CI for difference in proportions is p1− p2±z *D
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– with our numbers

D= 0.46751−0.4675
154


0.17371−0.1737

167
= 0.0498;

– for a 95% CI z*=1.96, so margin of error 1.96 .0498 =
0.0976,

– interval is 0.4675−0.1737±0.0976 = (0.2,0.39),

– so we think % of homicides in Toronto by shooting is between 
20 and 39 percentage points higher than in London.

Note: 

– same idea for CI as before, estimate +/- margin of error

– margin of error is z* times SE of estimate.

– So: figure out right estimate, right SE of estimate for what you
need CI of.
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Hypothesis test for difference in proportions (p.593)

– Null: H 0 : p1− p2=0 or H 0 : p1= p2

– Alternative: H A : p1− p2≠0 or p1≠ p2

– (or p1− p20 or p1 p2 )

– (or p1− p20 or p1 p2 )

– Now, act as if p1= p2= p , say, so can do better for SE  p1− p2

– estimate p as overall proportion of successes and calculate

SE pooled  p1− p2= p1− p
n1


p 1− p
n2

=D p (p=”pooled”)

– then test statistic is z=
p1− p2

D p

– get P-value from normal distribution as before.
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On our data:
H 0 : p1= p2

H A : p1≠ p2

Shooting Other Total %shooting

London 29 138 167 17.37

Toronto 72 82 154 46.75

– overall proportion of deaths by shooting is 
2972

167154
= 0.3146

– so D p= 0.31461−0.3146
167


0.3146 1−0.3146

154
= 0.0519 (not 

much different from D=0.0498)

– so z=
0.4675−0.1737

0.0519
= 5.66
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– P-value=0.0000000151 (software). Conclude that shooting %'s
are different.
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Sample size for two proportions (p.598)

– Confidence interval for difference in proportions had margin of 
error 1.960.0498 =0.0976. How many homicides would we 
need to observe in each city to get this margin down to 0.07?

– Need to know p1 and p2

– but have guesses p1=0.4675 and p2=0.1737
– Assume number of homicides observed in each city same: let
n=n1=n2 .

– Equate desired margin with formula, leaving n unknown:

0.07=1.96 0.46751−0.4675
n


0.17371−0.1737

n
– and solve for n: between 307 and 308, take 308. Need this 

many homicides in each city.
– If p's unknown, replace them by 0.5. In above case, would 

require an n of 392 in each city.
– Pays to have knowledge of p1 , p2 !
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– Decreasing margin of error by a little can increase sample size 
required by a lot. (Cutting it in half: times sample size by 4).
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Power of hypothesis test

Again do by simulation. Have to know (or have guess at) both p's.

Suppose we'll do another study of % homicides by shooting for 
London and Toronto (using more recent data). We will look at 50 
homicides for each city. How likely are we to be able to reject
H 0 : p1= p2 in favour of H a : p1≠ p2 using =0.05 , when in fact
p1=0.4675 and p2=0.1737 ?

– generate a bunch of simulated homicide deaths by shooting for
each city:
– Toronto binomial n=50, p=0.4675
– London binomial n=50, p=0.1737
– turn each into proportions out of 50
– calculate D for each pair of simulated death proportions
– calculate test statistic each time
– get P-values

323



– count how many P-values are less than 0.05.
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Some of my simulation:

Seems unlikely that we fail to reject the null. 
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Tabulate “reject”:
Rejected 905 times of 1000: power 
estimated at 0.905=90.5%. Even with small
sample sizes still very likely to detect 
difference. True because %'s very different.
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What a hypothesis test is
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Table of tests and confidence intervals

Inference for SD to use (for CI if 
different)

P-value from For CI 
use

Proportion

 p1− pn
;  p1− p

n

normal z*

Comparing 
proportions  p 1− p

n1


p1− p
n2

;

 p1 1− p1

n1


p21− p2

n2

normal z*

Mean s/n t, df n-1 t*

Two means

 s1
2

n1


s2

2

n2

 H 0 :1−2=0
t, df
minn1−1,n2−1

t*

Matched pairs differences, H 0 :=0,
as for mean.
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Chapter 23: Inferences about means (p.617)

“Damaged by acid rain” or “Cause of homicide death” categorical 
variable. But what about eg. number of calories in a serving of 
yogurt? Might want to say something about mean calories/serving 
in all servings of a certain type of yogurt. That is quantitative 
variable. (exercise #36.)

Central limit theorem says:
– if you sample from a population with mean  , SD  , 

sampling distribution of y approximately
– normal 
– mean 
– SD  /n
if sample size n is large.
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All very nice, but:
– sample size may not be large
– population SD  almost certainly not known

What then?
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Investigate by simulation. Population normal, mean 30, SD 5, take
samples of size 2. Pretend  not known, so use sample SD's 
instead. 

Look at t-sim data (on StatCrunch):
– generate normal population mean 30 SD 5
– take 1000 (“many”) samples of size 2, save in one column with

column of which sample they belong to
– calculate mean of each sample
– calculate SD of each sample
– calculate z for each sample, using sample SD instead of 

population SD, and using correct mean 30
– calculate P-value for each z (2-sided alternative)
– for each P-value, note whether less than 0.05 (reject=true) or 

greater (reject=false).
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– Since hypothesized mean of 30 is correct, proportion of (false)
rejections should be around 0.05 (50 out of 1000).

– How many times did we reject?

283 times, or 28.3%. Way too much!
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Problem! How to fix this up?

– Issue: sample SD isn't same as population SD, might be far off
if sample size small.

– Gosset (p. 620 of text) worked out what to do:
– calculate test statistic using sample SD, call it t.
– get P-value from table of t-distribution (Table T) with n-1 

degrees of freedom.
– Example: 
– testing H 0 :=30 vs. H A :≠30 (two-sided) and have n=10,

y=35 , s=5.
– t=35−30/5/10 = 3.16.
– Look up in table with 10-1=9 df:
– 3.16 between 2.821 and 3.250
– so P-value between 0.01 and 0.02
– StatCrunch gives 2 x 0.0058 = 0.0116.
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– Using =0.05 , reject null;
– conclude population mean not 30. 
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How does our simulation perform getting P-values from t-
distribution with 1 df (sample size 2)?

Very close to 5% (wrong) rejections of the null. Good.
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When will the t-test work?

– Theory based on normal population.
– With large samples: 
– central limit theorem will work regardless of actual shape of 

population.
– sample SD will be close to population SD, so not knowing 

won't matter much.
– with small  samples:
– no central limit theorem to help
– sample SD might be far from population SD
– beware of outliers/skewness

– but: in most cases, t pretty good (robust). 
– Draw a picture (eg. histogram) first!
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Example

A diet guide claims that the average number of calories in a 
serving of vanilla yogurt is 120 or less. 14 brands of vanilla yogurt 
are randomly sampled; the sample mean  is 157.9 and the sample
SD is 44.8. Do these data offer evidence that the diet guide is 
wrong?

Let  be the mean number of calories per serving of all brands of 
vanilla yogurt. Testing H 0 :=120  against H A :≠120 .

Test statistic t=157.9−120/44.8 /14 = 3.17. 
degrees of freedom  14-1=13           
P-value    less than 0.01 (off end of table)                                    
Conclusion:   reject null (mean is 120) in favour of alternative 
(mean not 120)                                                              
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Confidence interval for the population mean (p.620)

Similar idea as for proportions:

– best guess at population mean is sample mean y
– make interval that goes up and down depending on uncertainty

in x
– have to use t-distribution when using sample SD s.

So:   CI is y±t *
s

n
.

Yogurt data: n=14, y=157.9 , s=44.8. With 13 df, t *=2.160  for 
95% interval (look at bottom of Table T). Hence margin is
m=2.16044.8 /14 = 25.9 and interval (132.0, 183.8).
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Know that population mean almost certainly above 120 but don't 
know precisely what it is. (A lot of variability in data plus small 
sample.)
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Test vs confidence interval (p. 632)

Another example: data n=30, y=40 , s=10. Test H 0 :=35 vs
H A :≠35 at =0.05 : gives t=2.74, P-value close to 0.01. Reject 

null and conclude that ≠35 .

95% CI for µ: (36.3, 43.7). 35 outside this interval, once again 
conclude that 35 not plausible value for µ. 

This works, if:
– test two-sided
–  for test and confidence level match up (eg. 0.05 and 95%).

P-value close to 0.01, so 35 should be right on edge of 99% CI, 
and is:
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Sample size and confidence intervals (p.633)

When planning a study, want to know what sample size to use. 

Take margin of error t *
s

n
=m , say, solve for n to get

 
n=t * sm 

2

But: don't know s, and don't know what df to use for t * . 

Use a guess at the standard deviation, and start with z*
(infinitely large df) instead of t * . This will give a value of n. Use 
that to get df for t * , and repeat.
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Example

In our yogurt data above, (n=14, y=157.9 , s=44.8), the margin 
of error for a 95% CI was m=25.9 . How big a sample would we 
need to reduce this margin of error to 20, if everything else stayed
the same?

Step 1: don't know df, so use z *=1.96 and calculate

n=1.96 44.8
20 

2

= 19.28.

Now n=19 approx, so use 18 df for t: t *=2.101 .

Recalculate:

n=2.101 44.8
20 

2

=22.15

Round up to be safe: a sample size of 23 should do it.
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We know that sample size 14 gives m=25.9 , so another way:

– want to multiply margin of error by 20/25.9 = 0.77, so divide 
sample size by 0.772 = 0.59. That is, sample size should be

14

0.772 = 23.48, almost as above.

– Not quite same as above because we didn't adjust for change 
in t * in changing sample size.

– “Inverse square law”: eg. if you want to cut margin of error in 
half, have to multiply sample size by 4.
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Sign Test (p.636)

What if we are not sure about using the t test, maybe because our
data are skewed? We might also have doubts about basing test on 
mean: what about median?

Say H 0 :median=50 . If H 0 true, each sample value equally likely 
to be above or below 50. Say n=10. Then number above is 
binomial with n=10, p=0.5, and use this to get P-value: sign test.

Makes no assumptions about data being normal. 
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Example

Yogurt data are: 160, 130, 200, 170, 220, 190, 230, 80, 120, 120,
80, 100, 140, 170. 
Test H 0 :median=120 vs H A :median120 . 2 values are less than 
120, 10 are greater, 2 exactly equal (throw away). On binomial 
with n=12, p=0.5, with X=number greater than 120:
– P(X=10) = 0.0161
– P(X=11) = 0.0029
– P(X=12) = 0.0002

Add these up to get P-value 0.0193. Again reject H 0 : the diet 
guide seems wrong.

P-value for sign test not as small as one for t-test (usually the 
case) but no assumption of (near-)normality. 

Sign test not as powerful as t test if data normal, so when t test 
applies, should use it.
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Power of t-test and sign test

Use yogurt example again.

How likely are we to reject H 0 :=120  in favour of a one-sided 
alternative (“greater”) if distribution of yogurt calories per serving 
actually normal with mean 150, SD 50 and we take samples of 
size 20?

Do by simulation in StatCrunch:
– generate many values from Normal(150,50) to be our 

population
– generate many samples of size 20 from this population, saved 

in one column with sample ID
– calculate mean and SD of each sample
– calculate t statistic and P-value for each sample
– count number of values over 120 in each sample, and get P-

value for it
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– for t test and sign test, count number of rejections and 
compare.
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Results for t test:

844 P-values of 1000 were less than 0.05, so power about 84%.
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Results for sign test: 

– 560+173=733 P-
values less than
0.05, so power
around 73%.

– Less than power
of t test (84%).

– In both cases,
good chance of
correctly
rejecting null.
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Chapter 24: Comparing two means (p.654)

– Seen that most useful results come from comparing two 
groups, eg. treatment vs control.

– How to make CI or test for difference between two means?

CI, generally, is 
estimate±t *SD(estimate) . What are those two things here?

For estimate, use sample means, using 1 and 2 to indicate the two
samples:

ȳ1− ȳ2

Suppose group 1 has population SD σ1 and group 2 has 
population SD σ2 . Suppose also we have n1 observations in 
group 1 and n2 in group 2.
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What is SD( ȳ1− ȳ2)? Well, we know that

var( ȳ1− ȳ2)=var ( ȳ1)+var ( ȳ2)=
σ1

2

n1

+
σ2

2

n2

Now, we don't know σ1 or σ2 , so we have to replace them with 
the sample Sds. That gives us this: 

estimate= y1− y2 , SD(estimate )=√ s1
2

n1

+
s2

2

n2

.

A t distribution is approximately correct for this. 
For df, base on smaller sample (or use scary formula at bottom of 
p. 657).
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Example

In a study to compare differences in resting pulse rates between 
men and women, the sample of 28 men had a mean of 72.75 and 
an SD of 5.37; the sample of 24 women had a mean of 72.625 
and an SD of 7.70. What is a 90% confidence interval for the 
difference in population means? (A boxplot is shown on p. 681, 
suggesting not much difference.)

Based on 24-1=23 df, t *=1.714 . Working with men minus 
women, the estimate for the difference in population means is

72.75−72.625 = 0.075, and our standard deviation is  5.372

28


7.702

24
= 1.871. Thus the interval is 0.075±1.7141.871 or (-3.13, 3.28). 
“No difference” entirely plausible.
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Test to compare two means

Same story: t=
estimate−null
SD(estimate)

, compare with right t distribution. 

The null is “no difference”: H 0 :1− 2=0 or H 0 :1=2 and H A is   
here H A :1− 2≠0 or H A :1≠2 . Can have one-sided alternative 
if needed.

Filling in everything gives

t=
ȳ1− ȳ2−0

√ s1
2

n1

+
s2

2

n2

and get P-value from t with df based on smaller sample.
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Example: 50 each of males and females had to place strangely-
shaped pegs into matching holes. The number of pegs placed in 
one minute are as shown:

Males Females
Sample size 50 50
Sample mean 19.39 17.91
Sample SD 2.52 3.39

Is there evidence that the mean number of pegs is different for 
males and females?

Males=1, females=2: H 0 :1= 2 , H A :1≠ 2 .

t=
19.39−17.91

 2.522

50


3.302

50

= 2.52, 

P-value (49 df, use 45) between 0.01 and 0.02. 

At =0.05 have evidence of difference in means (but not at
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=0.01 ).

One more example: Lianas are woody vines that grow in tropical 
rainforests. Researchers measured liana abundance (stems per 
hectare) in the central Amazon region of Brazil. Each area was 
classified as “near” (the edge of the rainforest, less than 100m 
away) or “far” from the edge of the rainforest. The researchers are
looking to see whether liana abundance is higher near the edge of 
the rainforest.

Let 1 represent “near” and 2 represent “far”. μ is population mean
for each group.

Hypotheses are: H 0 :μ1=μ2 ,    H a :μ1>μ2                  .

Data: the 34 “near” liana areas have mean 438 and SD 125; the 
34 “far” areas have mean 368 and SD 114.
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ȳ1− ȳ2 is   438-368=70                         

SD of ȳ1− ȳ2 is √ s1
2

n1

+
s2
2

n2

=    29.01                     

Test statistic is t =    (70-0)/29.01=  2.41                         

Correct side or wrong side?    Correct side (diff in means +)          

Df =  34-1=33   (use 32)         ;   P-value =    0.01-0.025            
Decision:   reject null at alpha=0.05, conclude near has greater 
liana density than far                                

We can also find a 95% confidence interval for the difference in 
means:

With 33 df, t* =   2.037                            
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Margin of error    2.037 x          (29.01)=  59.09                           

CI from   70-59.09=10.91     to     70+59.09=129.09                   
.
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Today, I (Ken Butler) am pretending to be Srishta Chopra.
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Chapter 25: Paired Samples and Blocks (p.688)

What about this?

Company institutes exercise break for its workers, assess workers' 
satisfaction before and after implementation of exercise program. 
Want to prove satisfaction higher afterwards.

Worker 1 2 3 4 5 6 7 8 9 10
Before 34 28 29 45 26 27 24 15 15 27
After 33 36 50 41 37 41 39 21 20 37

Two samples of 10 workers, use methods of last chapter?
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NO! the same 10 workers were assessed before and after, so don't
have two separate samples (would use 10 different workers before
and after). Paired data.
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Analysis: a piece of cake! Add a row to table:

Worker 1 2 3 4 5 6 7 8 9 10
Before 34 28 29 45 26 27 24 15 15 27
After 33 36 50 41 37 41 39 21 20 37
Difference -1 8 21 -4 11 14 15 6 5 10

– For each worker, find differences after minus before.
– Then have one sample of differences

– Test to see whether population mean diff could be zero. 
– 10 differences have mean 8.5 and SD 7.47
–  pop mean diff; H 0 :=0 , H A :0

– t= 8.5−0
7.47/10

= 3.6, 9 df, P-value < 0.005.

– Reject null hypothesis: conclude that mean satisfaction after
is higher than before (for all workers).
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– Or: 95% CI for population mean diff:
– 8.5±2.262 7.47 /10 , 8.5±3.54 = 4.96 to 12.04.

– Assumption: differences come (approx.) from normal 
distribution.

– Look at eg. histogram of differences.
– If differences not normal enough for you, do sign test on 

differences instead.
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Matched pairs and two-sample (see box p.701)

The design of controls and instruments has a large effect on how 
easy they are to use. A sample of 25 right-handed students were 
asked to turn a knob a fixed distance (with their right hands). 
There were two identical knobs, one which turned clockwise and 
one counterclockwise. The times for each student for the two 
knobs are summarized below.

n Mean SD
Clockwise 25 104.12 15.79
C-clockwise 25 117.44 27.26
difference 25 -13.32 22.94

Find a 95% CI to compare times. Is this matched pairs or two 
independent samples? 

Each student gave two measurements, which we can pair up by 
student. So Matched Pairs.
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- df =  25-1=24       
- t* =    2.064        
- margin of error    m=(2.064)(22.94/sqrt(25))=  9.47                     
- CI    -13.32 plus/minus 9.47 = from -22.69 to -3.85                   

Clockwise turns quicker than counter-clockwise ones on average.
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Matched pairs and two-sample again

Physical fitness is related to personality. College faculty were 
divided into high-fitness and low-fitness groups. They were each 
given an “ego-strength” personality test, with the results 
summarized below:

n mean SD
High-fitness 14 6.43 0.43
Low-fitness 14 4.64 0.69
Differences 14 1.79 0.73

Want to use a 95% CI to compare ego strengths of the high-
fitness and low-fitness groups. Is this matched pairs or two 
independent samples? 

Each faculty member contributes only one measurement, so there 
are 28 faculty members in the study altogether. This is two 
independent samples.
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(How were the differences calculated anyway?)

t*=2.160; 6.43−4.64±2.1600.432

14


0.692

14
. Sq root is 0.22; CI is 

from 1.31 to 2.27.

Mean ego strength higher for high-fitness individuals than low-
fitness.

When the sample sizes are different, it must be two independent 
samples (no way of pairing them up), but when the sample sizes 
are the same, it could be either.
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Effect of doing the wrong thing

Go back to workers' exercise program:

Worker 1 2 3 4 5 6 7 8 9 10
Before 34 28 29 45 26 27 24 15 15 27
After 33 36 50 41 37 41 39 21 20 37
Difference -1 8 21 -4 11 14 15 6 5 10
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Matched pairs
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Two-sample: P-value bigger (less significant). Doing the wrong 
test gets you a less significant P-value.
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Tests and CIs

Inference for SD to use (for CI if 
different)

P-value from For CI 
use

Proportion 

 p 1− pn
;  p1− p

n

normal z*

Mean s /n t, df n-1 t*

Two means

 s1
2

n1


s2

2

n2

 H 0 :1−2=0
t, df
minn1−1,n2−1

t*

Matched pairs differences, H 0 :=0,
as for mean.

371



We are
done!

:-)
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