CSCB63 Winter 2018
 Week 5 Lecture 2 - Minimum Cost Spanning Trees

Anna Bretscher and Albert Lai

February 23, 2019

TODAY

Kruskals Algorithm

Prims Algorithm

Dijkstra's Algorithm

Introduction: (Edge-)Weighted Graphs

These are computers and costs of direct connections. What is a cheapest way to network them?

(Edge-)WEIghted Graph

- Many useful graphs have numbers or weights assigned to edges.
- Think of each edge e having a price tag $w(e)$.
- Usually $w(e) \geq 0$. Some cases have $w(e)<0$.

A weighted (edge-weighted) graph consists of:

- a set of vertices V
- a set of edges E
- weights: a map from edges to numbers $w: E \rightarrow \mathbb{R}$
- undirected graphs: $\{u, v\}=\{v, u\}$, same weight
- directed graphs: (u, v) and (v, u) may have different weights
- Notation: $w(u, v)$ or $w(e)$ or weight (u, v) etc.

Storing a Weighted Graph

Adjacency matrix:

	A	B	C	D	E
A	0	4	2	∞	∞
B	4	0	1	5	∞
C	2	1	0	∞	∞
D	∞	5	∞	0	∞
E	∞	∞	∞	∞	0

Adjacency lists:

	adjacency list
A	$(B, 4),(C, 2)$
B	$(A, 4),(C, 1),(D, 5)$
C	$(A, 2),(B, 1)$
D	$(B, 5)$
E	

Common Task \#1 on Weighted Graphs - Minimum Cost Spanning Trees

Let $G=(V, E)$ be a connected, undirected graph with edge weights w(e) for each edge $e \in E$.
A spanning tree is a tree A such that every vertex $v \in V$ is an endpoint of at least one edge in A.
Q. Which algorithms have we seen to construct a spanning tree?
A. DFS, BFS

A minimum cost spanning tree (MST) is a spanning tree A such that the sum of the weights is minimum for all possible spanning trees B.

$$
w(A)=\sum_{e \in A} w(e) \leq w(B)
$$

Example

Usually just for undirected, connected graphs.
Q. How might we find a minimum spanning tree?
A. Let's brain storm - there are several greedy edge selection techniques that can work.

Sample Graph

vertex priority pred	0	b	c	d	e	f	g	h	i

vertex	b	h	c	d	e	f	g	i
priority	4	8	∞	∞	∞	∞	∞	∞
pred	a	a						

vertex	h	c	d	e	f	g	i
priority	8	8	∞	∞	∞	∞	∞
pred	a	b					

vertex	g	i	c	d	e	f
priority	1	7	8	∞	∞	∞
pred	h	h	b			

vertex	f	i	c	d	e
priority	2	6	8	∞	∞
pred	g	g	b		

vertex	c	i	e	d
priority	4	6	10	14
pred	f	g	f	f

Greedy Algorithms

Kruskal's Pick the least weight edge that doesn't induce a cycle.
Prim's Start with a minimum tree or set consisting of a single vertex Add a least weight edge that "grows" the tree without creating a cycle. Often think of this as a set of vertices and edges in a set S (the tree) and adding edge (v, z) to S where $v \in V-S$ and $z \in S$ where $w(v, z)$ is minimum for all such edges.
Q. How can we convince ourselves that our algorithms are correct?
A. We can prove using a contradiction argument.

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm finds an MST by repeatedly adding the least weight edge that does not induce a cycle.

Proof by Contradiction.

- Order edges in non-decreasing order of weight, i.e. such that $w_{1} \leq w_{2} \leq \ldots \leq w_{n}$ where $w\left(e_{i}\right)=w_{i}$.
- Let K be the spanning tree returned by Kruskals algorithm.
- Suppose that O is an optimal MST, such that weight of O is less than weight of K. K is not optimal.
- Let $e_{i}=(u, v)$ be the first edge in our ordering that is not in both K and O.
- Can $e_{i} \in O$ but $e_{i} \notin K$?
\rightarrow no, because K only omits edges if they create a cycle.
- Therefore, $e_{i} \in K$ but $e_{i} \notin O$.

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm finds an MST by repeatedly adding the least weight edge that does not induce a cycle.

Proof by Contradiction.

- Since O is connected, there must exist a unique path p from u to v and an edge e^{\prime} on p that is not in K.
- Since K did not select e^{\prime} (but had the option to), $w\left(e^{\prime}\right) \geq w_{i}$.

Case 1. $w\left(e^{\prime}\right)=w_{i}$. Then we can simply switch e_{i} and e^{\prime} and now O has the same weight as before but is more similar to K. Repeat the same argument until either Case 2 or the two trees are the same and K is optimal.
Case 2. $w\left(e^{\prime}\right)>w_{i}$. Now consider a new tree O^{\prime} constructed by removing e^{\prime} from O and adding e_{j}. Now O^{\prime} has weight less than O contradicting that K and O differ. Therefore K must be optimal.

Kruskal's Algorithm

Q. How should we store the edges sorted by non-decreasing weight?
A. MIN priority queue!
Q. How can we add edges and make sure that no cycle is induced.
A. Think of joining together clusters (subtrees) of connected vertices. \leftarrow Will learn efficient way to do this soon...but one way is to use linked lists (not super efficient).

Kruskal (E, V)

```
S := new container() for chosen edges
PQ := min priority queue of edges and weights
for each vertex v:
    v.cluster := {v}
while not PQ.is_empty():
    {u,v} = PQ.extract_min():
    if u.cluster # v.cluster:
    S.add({u,v})
        union(u.cluster, v.cluster)
return S
```


Storing Clusters: Easy Way - Linked Lists

Idea.

- each cluster is a linked list
- v.cluster is pointer to v's own linked list
- u.cluster \neq v.cluster is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
\rightarrow a lot of vertices need their cluster pointers updated
Luckily, if you move the smaller list to the larger one, then:
- whenever v.cluster needs update, cluster size roughly doubles
- If cluster size doubles, at most how many cluster updates can we do?
- each v.cluster is updated at most $\lg n$ times

We will see a faster way later in this course.

Kruskal's Algorithm Time Complexity

Complexity

- Building PQ and removing edges: $\Theta(m \lg m)$.
- v.cluster updates: $O(\lg n)$ per vertex $\rightarrow O(n \lg n)$
- the rest is $\Theta(1)$ per vertex or edge

Total $O(n \lg n+m \lg m)$ time worst case.
Q. What do we know about $\lg m$ and $\lg n$?
A. $\lg m \in O(\lg n)$.

Therefore,
$O((n+m) \lg n)$ time.
Faster if faster cluster implementation.

Prim's Algorithm Again

Prim's algorithm finds an MST by something similar to breadth-first search, but with a twist:

The queue is changed to a min priority queue.
The algorithm grows a tree T one edge at a time.
Priority of vertex $v=$ smallest edge weight between v and T so far. (∞ if no such edge.)

Let's step through the example again...

Prim's Algorithm: A Few Example Steps

vertex priority pred	0	a	b	c	d	e	f	g	h
i									

Prim's Algorithm: A Few Example Steps

vertex	b	h	c	d	e	f	g	i
priority	4	8	∞	∞	∞	∞	∞	∞
pred	a	a						

Prim's Algorithm: A Few Example Steps

vertex	h	c	d	e	f	g	i
priority	8	8	∞	∞	∞	∞	∞
pred	a	b					

Prim's Algorithm: A Few Example Steps

vertex	g	i	c	d	e	f
priority	1	7	8	∞	∞	∞
pred	h	h	b			

Prim's Algorithm: A Few Example Steps

vertex	f	i	c	d	e
priority	2	6	8	∞	∞
pred	g	g	b		

Prim's Algorithm: A Few Example Steps

vertex	c	i	e	d
priority	4	6	10	14
pred	f	g	f	f

PRIM's Algorithm

Prim (V, E)

$S:=$ new container() for edges PQ := new min-heap() start := pick a vertex PQ.insert (start, 0)

while not $\mathrm{PQ} . i s _e m p t y():$
\# add least edge to grow the tree
$u:=P Q . e x t r a c t _m i n()$
S. add (\{u.pred, u\}) ~
for each z in $u^{\prime} s$ adjacency list: \# update priorities based on u now in S
if z in $P Q$ \&\& weight $(u, z)<p r i o r i t y ~ o f ~ z: ~$
PQ. decrease_priority(z, weight (u, z))
z.pred := u
return S

Prim's Algorithm Time Complexity

Q. How many times does a vertex enter/leave the min-heap?
A. Every vertex enters and leaves min-heap once: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$
Q. How many times can a vertex's priority decrease?
A. Every edge may trigger a change of priority: so $\forall v \in V, O(\operatorname{deg}(v))$ which is $O(m)$ and takes $O(\lg n)$ for a total of $O(m \log n)$.

- Everything else, can be done in $\Theta(1)$ per vertex or per edge
- Total $O((n+m) \lg n)$ time worst case.

Prim's Correctness Proof

To begin with we will first prove a useful property:
Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the lowest-cost edge crossing ($S, V-S$), then (u, v) is in every MST of G.
Proof.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and $V-S$.
- There must exist a path from u to v.
- On this path, there must exist an edge e that crosses between $V-S$ into S.
- Since (u, v) is the least weight edge crossing between V and $S-V$, swapping (u, v) with e will reduce the weight of T.
- Therefore, T is not an MST.

Correctness of Prim's Algorithm

The correctness of Prim's Algorithm follows...from the Cut Property.
Q. How would the argument go?
A.

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.
- Consider the first edge $e=(u, v)$ in the ordering that is in T but not in O.
- At the stage of Prim's when e was added there was a set S of vertices such that $u \in S, v \in V-S$.
- If the edge weights are unique, by the Cut Property, e must belong to O. Therefore consider when edge weights are not unique.
- Since $e \notin O$, there exists a path p from u to v such that an edge $e^{\prime}=(x, y)$ exists on p and $x \in S$ and $y \in V-S$.
- If $w\left(e^{\prime}\right)=w(e)$ then we can swap e^{\prime} with e and the tree will still span tree G and be minimal.
- Must be that $w\left(e^{\prime}\right) \nless w(e)$ since then Prim's algorithm would have chosen it.
- If $w\left(e^{\prime}\right)>w(e)$ then swapping e^{\prime} with e reduces the weight of O, which is a contradiction.

Common Theme for Greedy Correctness Proofs

- Let R be our greedy rule for selecting edges.
- Consider our edge set sorted according to R.
- Let O be an optimal solution that differs from our algorithm solution T.
- Consider our first edge $\{u, v\}$ in the edge set ordering that differs between O and T.
- Show that by definition of $R,\{u, v\} \in T$.
- Consider the set of selected vertices $S \subset V(T)$ when $\{u, v\}$ is chosen. By construction, $u \in S$ and $v \in V-S$.
- Consider the path p from u to v in O and the edge $e \in p$ that crosses from S to $V-S$.
- Show that swapping e and $\{u, v\}$ in O maintains the MST properties of O either improves or maintains the optimality of O.
\star You may find it helpful to know that many greedy algorithm proofs (for other types of problems) follow a similar template.
* L02's notes have a different but similar template - another perspective.

