CSCB63 WINTER 2018 Week 5 Lecture 2 - Minimum Cost Spanning Trees

Anna Bretscher and Albert Lai

February 23, 2019

Kruskals Algorithm

Prims Algorithm

Dijkstra's Algorithm

INTRODUCTION: (EDGE-)WEIGHTED GRAPHS

These are computers and costs of direct connections. What is a cheapest way to network them?

(EDGE-)WEIGHTED GRAPH

- Many useful graphs have numbers or weights assigned to edges.
- Think of each edge e having a *price tag* w(e).
- Usually $w(e) \ge 0$. Some cases have w(e) < 0.

A weighted (edge-weighted) graph consists of:

- a set of vertices V
- a set of edges E
- weights: a map from edges to numbers $w : E \to \mathbb{R}$
 - undirected graphs: $\{u, v\} = \{v, u\}$, same weight
 - directed graphs: (u, v) and (v, u) may have different weights
- ▶ Notation: w(u, v) or w(e) or weight(u, v) etc.

STORING A WEIGHTED GRAPH

Adjacency matrix:

	Α	В	С	D	Ε
Α	0	4	2	∞	∞
В	4	0	1	5	∞
С	2	1	0	∞	∞
D	∞	5	∞	0	∞
Е	∞	∞	∞	∞	0

Adjacency lists:

	adjacency list
A	(<i>B</i> ,4), (<i>C</i> ,2)
B	(<i>A</i> ,4), (<i>C</i> ,1), (<i>D</i> ,5)
C	(A,2), (B,1)
D	(<i>B</i> ,5)
E	

Common Task #1 on Weighted Graphs - Minimum Cost Spanning Trees

Let G = (V, E) be a *connected*, *undirected* graph with *edge weights* w(e) for each edge $e \in E$.

A spanning tree is a tree A such that every vertex $v \in V$ is an endpoint of at least one edge in A.

Q. Which algorithms have we seen to construct a spanning tree?

A. DFS, BFS

A minimum cost spanning tree (**MST**) is a spanning tree A such that the sum of the weights is minimum for all possible spanning trees B.

$$w(A) = \sum_{e \in A} w(e) \le w(B)$$

EXAMPLE

Usually just for undirected, connected graphs.

Q. How might we find a minimum spanning tree?

A. Let's brain storm - there are several *greedy edge selection techniques* that can work.

		a	4	11 (H		8 7 1	c 2 í		4	(d) 14	9	e)
/ertex	а	b	С	d	е	f	g	h	i				
oriority ored	0	∞	∞	∞	∞	∞	∞	∞	∞				

١

		1	4 8	11	b	8 7 1	2 (i 6	i	7 d 9 4 14 e 10 2
vertex	b	h	С	d	е	f	g	i	
oriority	4	8	∞	∞	∞	∞	∞	∞	
ored	а	а							

١

		a	4 8	11	b	8 7 1		7 7 4 14 6 10 7 7 14 14 10 7 10 10
vertex	h	С	d	е	f	g	i	
oriority	8	8	∞	∞	∞	∞	∞	
ored	а	b						

		a	4	11	b	8 7 1	$\begin{array}{c} c \\ 7 \\ 2 \\ d \\ 9 \\ 4 \\ 14 \\ e \\ 6 \\ f \\ 10 \\ g \\ 2 \\ g \\ 2 \end{array}$
vertex priority	g 1 h	i 7 h	с 8 b	d ∞	e ∞	f ∞	

vertex	С	i	е	d
priority	4	6	10	14
pred	f	g	f	f

GREEDY ALGORITHMS

Kruskal's Pick the *least weight edge* that doesn't *induce a cycle*.

Prim's Start with a *minimum tree* or *set* consisting of a *single vertex* Add a *least weight edge* that "grows" the *tree* without creating a cycle. Often think of this as a set of *vertices and edges* in a set *S* (the tree) and *adding* edge (v, z) to *S* where $v \in V - S$ and $z \in S$ where w(v, z)is minimum for all such edges.

Q. How can we convince ourselves that our algorithms are correct?

A. We can prove using a *contradiction argument*.

KRUSKAL'S ALGORITHM: PROOF OF CORRECTNESS

Kruskal's algorithm finds an *MST* by repeatedly adding the *least weight edge* that does *not induce* a *cycle*.

Proof by Contradiction.

- ► Order edges in non-decreasing order of weight, i.e. such that w₁ ≤ w₂ ≤ ... ≤ w_n where w(e_i) = w_i.
- Let *K* be the spanning tree returned by *Kruskals* algorithm.
- Suppose that O is an optimal MST, such that weight of O is less than weight of K. K is not optimal.
- Let $e_i = (u, v)$ be the *first* edge in our *ordering* that is not in both K and O.
- Can $e_i \in O$ but $e_i \notin K$?
- \rightarrow no, because K only *omits* edges if they create a *cycle*.
- Therefore, $e_i \in K$ but $e_i \notin O$.

KRUSKAL'S ALGORITHM: PROOF OF CORRECTNESS

Kruskal's algorithm finds an *MST* by repeatedly adding the *least weight edge* that does *not induce* a *cycle*.

Proof by Contradiction.

- Since O is connected, there must exist a *unique path p* from u to v and an edge e' on p that is not in K.
- Since K did not select e' (but had the option to), $w(e') \ge w_i$.

Case 1. $w(e') = w_i$. Then we can simply switch e_i and e' and now *O* has the same weight as before but is more *similar* to *K*. Repeat the same argument until either **Case 2** or the two trees are the same and *K* is *optimal*.

Case 2. $w(e') > w_i$. Now consider a new tree O' constructed by removing e' from O and adding e_i . Now O' has weight less than O contradicting that K and O differ. Therefore K must be *optimal*.

KRUSKAL'S ALGORITHM

Q. How should we store the edges sorted by non-decreasing weight?

A. MIN priority queue!

Q. How can we add edges and make sure that no cycle is induced.

A. Think of *joining* together *clusters* (subtrees) of *connected vertices*. ← Will learn *efficient* way to do this soon...but one way is to use *linked lists* (not super efficient).

```
Kruskal(E, V)
S := new container() for chosen edges
PQ := min priority queue of edges and weights
for each vertex v:
    v.cluster := {v}
while not PQ.is_empty():
    {u,v} = PQ.extract_min():
    if u.cluster ≠ v.cluster:
        S.add({u,v})
        union(u.cluster, v.cluster)
return S
```

STORING CLUSTERS: EASY WAY - LINKED LISTS

Idea.

- each cluster is a linked list
- v.cluster is pointer to v's own linked list
- *u.cluster* \neq *v.cluster* is pointer equality, $\Theta(1)$ *time*
- merging two clusters is merging two linked lists, BUT:
 - → a lot of vertices need their cluster pointers updated

Luckily, if you move the *smaller list* to the *larger one*, then:

- whenever v.cluster needs update, cluster size roughly doubles
- If cluster size doubles, at most how many cluster updates can we do?
- each v.cluster is updated at most lg n times

We will see a *faster* way *later* in this course.

KRUSKAL'S ALGORITHM TIME COMPLEXITY

Complexity

- Building PQ and removing edges: $\Theta(m \lg m)$.
- v.cluster updates: $O(\lg n)$ per vertex $\rightarrow O(n \lg n)$
- the rest is ⊖(1) per vertex or edge

Total $O(n \lg n + m \lg m)$ time worst case.

- **Q.** What do we know about $\lg m$ and $\lg n$?
- **A.** $\lg m \in O(\lg n)$.

Therefore,

 $O((n+m)\lg n)$ time.

Faster if faster cluster implementation.

PRIM'S ALGORITHM AGAIN

Prim's algorithm finds an *MST* by something similar to *breadth-first search*, but with a twist:

The queue is changed to a min priority queue.

The algorithm *grows a tree T* one edge at a time.

Priority of vertex v = smallest edge weight between v and T so far. (∞ if no such edge.)

Let's step through the example again...

vertex	С	1	е	d
priority	4	6	10	14
pred	f	g	f	f

PRIM'S ALGORITHM

PRIM'S ALGORITHM TIME COMPLEXITY

- Q. How many times does a vertex enter/leave the min-heap?
- **A.** Every *vertex* enters and leaves min-heap *once*: $\Theta(\lg n)$ per vertex, totalling $\Theta(n \lg n)$
- Q. How many times can a vertex's priority decrease?
- **A.** Every edge may trigger a change of priority: so $\forall v \in V, O(deg(v))$ which is O(m) and takes $O(\lg n)$ for a total of O(mlogn).
 - ► Everything else, can be done in Θ(1) per vertex or per edge
 - Total $O((n+m)\lg n)$ time worst case.

PRIM'S CORRECTNESS PROOF

To begin with we will first prove a useful property:

Cut Property: Let *S* be a nontrivial subset of *V* in *G* (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the *lowest-cost edge* crossing (S, V - S), then (u, v) is in *every MST* of *G*.

Proof.

- Suppose there exists an *MST T* that does not contain (u, v).
- ► Consider the sets S and V S.
- There must exist a path from u to v.
- ▶ On this path, there must exist an *edge e* that *crosses* between *V* − *S* into *S*.
- Since (u, v) is the least weight edge crossing between V and S−V, swapping (u, v) with e will reduce the weight of T.
- ▶ Therefore, *T* is not an *MST*.

CORRECTNESS OF PRIM'S ALGORITHM

The correctness of *Prim's* Algorithm follows...from the Cut Property.

Q. How would the argument go?

Α.

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in *T* but not in *O*.
- At the stage of *Prim's* when *e* was added there was a set *S* of vertices such that $u \in S$, $v \in V S$.
- If the edge weights are *unique*, by the Cut Property, *e* must belong to *O*. Therefore consider when *edge weights* are *not unique*.
- Since e ∉ O, there exists a path p from u to v such that an edge e' = (x, y) exists on p and x ∈ S and y ∈ V − S.
- If w(e') = w(e) then we can swap e' with e and the tree will still span tree G and be minimal.
- ▶ Must be that $w(e') \neq w(e)$ since then *Prim's* algorithm would have chosen it.
- If w(e') > w(e) then swapping e' with e reduces the weight of O, which is a contradiction.

COMMON THEME FOR GREEDY CORRECTNESS PROOFS

- Let *R* be our *greedy rule* for selecting edges.
- Consider our *edge set* sorted according to *R*.
- Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- ► Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- Show that by definition of R, $\{u, v\} \in T$.
- Consider the set of selected vertices S ⊂ V(T) when {u, v} is chosen. By construction, u ∈ S and v ∈ V − S.
- ► Consider the *path p* from *u* to *v* in *O* and the edge $e \in p$ that crosses from *S* to V S.
- Show that swapping e and {u, v} in O maintains the MST properties of O either improves or maintains the optimality of O.
- ★ You may find it helpful to know that many greedy algorithm proofs (for other types of problems) follow a similar template.
- ★ L02's notes have a different but similar template another perspective.