
CSCB63 WINTER 2018
WEEK 5 LECTURE 2 - MINIMUM COST SPANNING TREES

Anna Bretscher and Albert Lai

February 23, 2019

1 / 23

TODAY

Kruskals Algorithm

Prims Algorithm

Dijkstra’s Algorithm

2 / 23

INTRODUCTION: (EDGE-)WEIGHTED GRAPHS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

These are computers and costs of direct connections. What is a cheapest way to
network them?

3 / 23

(EDGE-)WEIGHTED GRAPH

I Many useful graphs have numbers or weights assigned to edges.
I Think of each edge e having a price tag w(e).
I Usually w(e) ≥ 0. Some cases have w(e) < 0.

A weighted (edge-weighted) graph consists of:
I a set of vertices V
I a set of edges E

I weights: a map from edges to numbers w : E → R

I undirected graphs: {u,v }= {v ,u}, same weight
I directed graphs: (u,v) and (v ,u) may have different weights

I Notation: w(u,v) or w(e) or weight(u,v) etc.

4 / 23

STORING A WEIGHTED GRAPH

A B

C

D

E

4

1

5

2

Adjacency matrix:

A B C D E
A 0 4 2 ∞ ∞

B 4 0 1 5 ∞

C 2 1 0 ∞ ∞

D ∞ 5 ∞ 0 ∞

E ∞ ∞ ∞ ∞ 0

Adjacency lists:

adjacency list
A (B,4), (C,2)
B (A,4), (C,1), (D,5)
C (A,2), (B,1)
D (B,5)
E

5 / 23

COMMON TASK #1 ON WEIGHTED GRAPHS - MINIMUM

COST SPANNING TREES

Let G = (V ,E) be a connected, undirected graph with edge weights w(e) for each
edge e ∈ E .
A spanning tree is a tree A such that every vertex v ∈ V is an endpoint of at least one
edge in A.

Q. Which algorithms have we seen
to construct a spanning tree?

A. DFS, BFS

A minimum cost spanning tree (MST) is a spanning tree A such that the sum of the
weights is minimum for all possible spanning trees B.

w(A) =
∑
e∈A

w(e) ≤ w(B)

6 / 23

EXAMPLE

A B

C

D
4

1

5

2

Usually just for undirected, connected graphs.

Q. How might we find a minimum spanning tree?

A. Let’s brain storm - there are several greedy edge selection techniques that can
work.

7 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

8 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

9 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

9 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

9 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

9 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

9 / 23

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

9 / 23

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

vertex a b c d e f g h i
priority 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

pred

10 / 23

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

vertex b h c d e f g i
priority 4 8 ∞ ∞ ∞ ∞ ∞ ∞

pred a a

10 / 23

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

vertex h c d e f g i
priority 8 8 ∞ ∞ ∞ ∞ ∞

pred a b

10 / 23

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

vertex g i c d e f
priority 1 7 8 ∞ ∞ ∞

pred h h b

10 / 23

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

g

vertex f i c d e
priority 2 6 8 ∞ ∞

pred g g b

10 / 23

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

g

f

vertex c i e d
priority 4 6 10 14
pred f g f f

10 / 23

GREEDY ALGORITHMS

Kruskal’s Pick the least weight edge that doesn’t induce a cycle.

Prim’s Start with a minimum tree or set consisting of a single vertex

Add a least weight edge that "grows" the tree without creating a cycle.

Often think of this as a set of vertices and edges in a set S (the tree)
and adding edge (v ,z) to S where v ∈ V −S and z ∈ S where w(v ,z)
is minimum for all such edges.

Q. How can we convince ourselves that our algorithms are correct?

A. We can prove using a contradiction argument.

11 / 23

KRUSKAL’S ALGORITHM: PROOF OF CORRECTNESS

Kruskal’s algorithm finds an MST by repeatedly adding the least weight edge that
does not induce a cycle.

Proof by Contradiction.
I Order edges in non-decreasing order of weight, i.e. such that w1 ≤ w2 ≤ . . . ≤ wn

where w(ei) = wi .
I Let K be the spanning tree returned by Kruskals algorithm.
I Suppose that O is an optimal MST, such that weight of O is less than weight of

K . K is not optimal.
I Let ei = (u,v) be the first edge in our ordering that is not in both K and O.
I Can ei ∈O but ei < K ?
→ no, because K only omits edges if they create a cycle.
I Therefore, ei ∈ K but ei <O.

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

Anna Bretscher and Albert Lai CSCB63 Winter 2018 February 7, 2018 9 / 25

12 / 23

KRUSKAL’S ALGORITHM: PROOF OF CORRECTNESS

Kruskal’s algorithm finds an MST by repeatedly adding the least weight edge that
does not induce a cycle.

Proof by Contradiction.
I Since O is connected, there must exist a unique path p from u to v and an edge

e′ on p that is not in K .
I Since K did not select e′ (but had the option to), w(e′) ≥ wi .

Case 1. w(e′) = wi . Then we can simply switch ei and e′ and now O has the
same weight as before but is more similar to K . Repeat the same argument until
either Case 2 or the two trees are the same and K is optimal.
Case 2. w(e′) > wi . Now consider a new tree O′ constructed by removing e′

from O and adding ei . Now O′ has weight less than O contradicting that K and
O differ. Therefore K must be optimal.

SAMPLE GRAPH

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

Anna Bretscher and Albert Lai CSCB63 Winter 2018 February 7, 2018 9 / 25

13 / 23

KRUSKAL’S ALGORITHM

Q. How should we store the edges sorted by non-decreasing weight?

A. MIN priority queue!

Q. How can we add edges and make sure that no cycle is induced.

A. Think of joining together clusters (subtrees) of connected vertices. ←Will learn
efficient way to do this soon...but one way is to use linked lists (not super efficient).

Kruskal(E, V)

S := new container() for chosen edges

PQ := min priority queue of edges and weights

for each vertex v:

v.cluster := {v}

while not PQ.is_empty():
{u,v} = PQ.extract_min():

if u.cluster , v.cluster:

S.add({u,v})

union(u.cluster, v.cluster)

return S

14 / 23

STORING CLUSTERS: EASY WAY - LINKED LISTS

Idea.

I each cluster is a linked list
I v.cluster is pointer to v ’s own linked list
I u.cluster , v .cluster is pointer equality, Θ(1) time
I merging two clusters is merging two linked lists, BUT:

→ a lot of vertices need their cluster pointers updated

Luckily, if you move the smaller list to the larger one, then:
I whenever v.cluster needs update, cluster size roughly doubles
I If cluster size doubles, at most how many cluster updates can we do?
I each v.cluster is updated at most lgn times

We will see a faster way later in this course.

15 / 23

KRUSKAL’S ALGORITHM TIME COMPLEXITY

Complexity

I Building PQ and removing edges: Θ(m lgm).

I v .cluster updates: O(lgn) per vertex→ O(n lgn)

I the rest is Θ(1) per vertex or edge

Total O(n lgn + m lgm) time worst case.

Q. What do we know about lgm and lgn?

A. lgm ∈ O(lgn).

Therefore,

O((n + m) lgn) time.

Faster if faster cluster implementation.

16 / 23

PRIM’S ALGORITHM AGAIN

Prim’s algorithm finds an MST by something similar to breadth-first search, but with a
twist:

The queue is changed to a min priority queue.

The algorithm grows a tree T one edge at a time.

Priority of vertex v = smallest edge weight between v and T so far. (∞ if no such
edge.)

Let’s step through the example again...

17 / 23

PRIM’S ALGORITHM: A FEW EXAMPLE STEPS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7

vertex a b c d e f g h i
priority 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

pred

18 / 23

PRIM’S ALGORITHM: A FEW EXAMPLE STEPS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

vertex b h c d e f g i
priority 4 8 ∞ ∞ ∞ ∞ ∞ ∞

pred a a

18 / 23

PRIM’S ALGORITHM: A FEW EXAMPLE STEPS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

vertex h c d e f g i
priority 8 8 ∞ ∞ ∞ ∞ ∞

pred a b

18 / 23

PRIM’S ALGORITHM: A FEW EXAMPLE STEPS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

vertex g i c d e f
priority 1 7 8 ∞ ∞ ∞

pred h h b

18 / 23

PRIM’S ALGORITHM: A FEW EXAMPLE STEPS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

g

vertex f i c d e
priority 2 6 8 ∞ ∞

pred g g b

18 / 23

PRIM’S ALGORITHM: A FEW EXAMPLE STEPS

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

g

f

vertex c i e d
priority 4 6 10 14
pred f g f f

18 / 23

PRIM’S ALGORITHM

a

b

h

c

i

g

d

f

e

4

8

11

8 7

4

2
9

14

10

2

6

1

7
a

b

h

g

f

vertex c i e d
priority 4 6 10 14
pred f g f f

10 / 25

Prim(V, E)
S := new container() for edges
PQ := new min-heap()
start := pick a vertex
PQ.insert(start, 0)
for each vertex v , start:

initialize pq
PQ.insert(v, ∞)

while not PQ.is_empty():
add least edge to grow the tree
u := PQ.extract_min()
S.add({u.pred, u})

for each z in u’s adjacency list:
update priorities based on u now in S
if z in PQ && weight(u,z) < priority of z:

PQ.decrease_priority(z, weight(u,z))
z.pred := u

return S

19 / 23

PRIM’S ALGORITHM TIME COMPLEXITY

Q. How many times does a vertex enter/leave the min-heap?

A. Every vertex enters and leaves min-heap once: Θ(lgn) per vertex, totalling
Θ(n lgn)

Q. How many times can a vertex’s priority decrease?

A. Every edge may trigger a change of priority: so ∀v ∈ V ,O(deg(v)) which is
O(m) and takes O(lgn) for a total of O(mlogn) .

I Everything else, can be done in Θ(1) per vertex or per edge
I Total O((n + m) lgn) time worst case.

20 / 23

PRIM’S CORRECTNESS PROOF

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. S , ∅ and S , V). If (u,v) is
the lowest-cost edge crossing (S,V −S), then (u,v) is in every MST of G.

Proof.

I Suppose there exists an MST T that does not contain (u,v).
I Consider the sets S and V −S.
I There must exist a path from u to v .
I On this path, there must exist an edge e that crosses between V −S into S.
I Since (u,v) is the least weight edge crossing between V and S−V , swapping

(u,v) with e will reduce the weight of T .
I Therefore, T is not an MST.

21 / 23

CORRECTNESS OF PRIM’S ALGORITHM

The correctness of Prim’s Algorithm follows...from the Cut Property.

Q. How would the argument go?

A.
I Consider optimal MST O and Prim’s Algorithm tree T .
I Order edges of T according to order they are selected.
I Consider the first edge e = (u,v) in the ordering that is in T but not in O.
I At the stage of Prim’s when e was added there was a set S of vertices such that

u ∈ S, v ∈ V −S.
I If the edge weights are unique, by the Cut Property, e must belong to O.

Therefore consider when edge weights are not unique.
I Since e <O, there exists a path p from u to v such that an edge e′ = (x ,y) exists

on p and x ∈ S and y ∈ V −S.
I If w(e′) = w(e) then we can swap e′ with e and the tree will still span tree G and

be minimal.
I Must be that w(e′) ≮ w(e) since then Prim’s algorithm would have chosen it.
I If w(e′) > w(e) then swapping e′ with e reduces the weight of O, which is a

contradiction.
22 / 23

COMMON THEME FOR GREEDY CORRECTNESS PROOFS

I Let R be our greedy rule for selecting edges.

I Consider our edge set sorted according to R.

I Let O be an optimal solution that differs from our algorithm solution T .
I Consider our first edge {u,v } in the edge set ordering that differs between O and

T .
I Show that by definition of R, {u,v } ∈ T .
I Consider the set of selected vertices S ⊂ V (T) when {u,v } is chosen. By

construction, u ∈ S and v ∈ V −S.
I Consider the path p from u to v in O and the edge e ∈ p that crosses from S to

V −S.
I Show that swapping e and {u,v } in O maintains the MST properties of O either

improves or maintains the optimality of O.

? You may find it helpful to know that many greedy algorithm proofs (for other
types of problems) follow a similar template.

? L02’s notes have a different but similar template - another perspective.

23 / 23

