
Propositional Logic and Semantics

English is naturally ambiguous. For example, consider the fol-
lowing employee (non)recommendations and their ambiguity in
the English language:

• “I can assure you that no person would be better for the job.”

• “All in all, I cannot say enough good things about this can-
didate or recommend him too highly.”

Goal: We want to be able to write formal boolean expressions
such that there is no ambiguity.

For example, p → q → r means (p → q) → r or p → (q → r)?

Propositional Formulas

• Formal expressions involving conjunctions and propositional
variables.

• We denote this set by FPV or simply F , and define F in-
ductively.

2



Slight Diversion - Defining Sets Inductively

Defining Sets Inductively

What does the following definition construct?

Let X be the smallest set such that:

Basis: 0 ∈ X

Inductive Step: if x ∈ X then x+1 ∈ X.

the natural numbers

Q: How could we define the integers, Z?

Let Z be the smallest set containing:

Basis: 0 ∈ Z

Inductive Step: if z ∈ Z then z +1 ∈ Z and z − 1 ∈ Z

Q: How abou the rationals, Q?

Basis: 0 ∈ Z

Inductive Step: if z, y ∈ Z then

1. z +1 ∈ Z

2. z − 1 ∈ Z

3. y
z
∈ Z

3



Q: How abou the language of arithmetic, LA?

Let LA be the smallest set such that:

Basis: Q ∈ LA

Inductive Step: Suppose that x, y ∈ LA then

1. x+ y ∈ LA

2. x− y ∈ LA

3. x ∗ y ∈ LA

4. x÷ y ∈ LA

Why define sets by induction?

Consider the following conjecture:

Let e be an element of LA.

Let vr(e) represent the number of characters in e.

Let op(e) represent the number of operations, ie., characters
from {+,−, ∗,÷} in e.

CLAIM 1: Let P(e) be ”vr(e) = op(e) + 1”. Then ∀e ∈ LA, P (e).

We can prove this using a special version of induction called
structural induction.

4



CLAIM 1: Let P(e) be ”vr(e) = op(e) + 1”. Then ∀e ∈ LA, P (e).

We can prove this using a special version of induction called
structural induction.

Proof. STRUCTURAL INDUCTION on e:

1. Basis: Suppose e ∈ Q, then vr(e) = 1 and op(e) = 0.

2. Induction Step: Assume that P (e1) and P (e2) are true
for arbitrary expressions in LA. Let e = e1 ⊕ e2 where
⊕ ∈ {+,−, ∗,÷}.

Then,

vr(e) = vr(e1) + vr(e2)
by structural induction op(e) = op(e1) + 1+ op(e2) + 1

op(e) = op(e1) + op(e2) + 1
Therefore, vr(e) = op(e) + 1

5



FPV is the smallest set such that:

Base Case:

• true and false belong to FPV , and if p ∈ PV then
p ∈ FPV .

6



Induction Step: If p and q ∈ FPV , then so are

• NEGATION: ¬p

• CONJUNCTION: (p ∧ q)

• DISJUNCTION: (p ∨ q)

• CONDITIONAL: (p → q)

• BICONDITIONAL: (p ↔ q)

A formula in FPV is uniquely defined, i.e., there is no ambiguity.
(see the Unique Readibility Theorem in the notes.)

Q: What happens when a propositional formula is quite complex?
such as,

(((p ∧ y) ∨ (q → (r ∧ t))) ∧ ¬(s ∧ (u ∨ (v ∨ (x ∨ z)))))

brackets make it hard to read.

This has lead to conventions that define an informal notation that
uses less brackets.

7



Bracketing Conventions

1. drop the outer most parenthesis e.g, (p ∨ q) is short hand
for p ∨ q

2. give ∧ and ∨ precedence over → and ↔ (like ×,+ vs.
<,= in arithmetic) eg., (p∧q) → (p∨r) is short for p∧q →
p ∨ r

3. give ∧ precedence over ∨ (similar to × vs. + in arithmetic)
eg., (p ∧ q) ∨ t is short for p ∧ q ∨ r

4. group from the right when the same connective appears
consecutively, eg., p → q → r is short hand for (p → (q →
r)).

Q: Using these conventions, how can

(((p ∧ y) ∨ (q → (r ∧ t))) ∧ ¬(s ∧ (u ∨ (v ∨ (x ∨ z)))))

be simplified?

(p ∧ y ∨ (q → r ∧ t)) ∧ ¬(s ∧ (u ∨ v ∨ x ∨ z))

8



The Meaning of τ
Q: What is the difference between a propositional formula and a
propositional statement?

A propositional formula is syntactic. Ie., it is a bunch of symbols
with no meaning assigned to them.

A statement, has a value of true or false. We need to know what
the value is of the propositional variables before we can evaluate
the statement.

Therefore we need a method to determine the truth value of a
statement from the truth values assigned to the propositional
variables.

• Let τ be a truth assignment, ie., a function.

τ : PV → {true, false}.

• If p ∈ PV and τ assigns true to p, then we write

τ(p) = true.

• How does τ affect a propositional statement?

τ assigns truth values to propositional variables, which in
turn, give a propositional statement meaning.

• We need a function that behaves like τ , but operates on
propositional statements.

• Let τ ∗ : FPV → {true, false}. What does this mean?

This means that τ take as input a propositional statement
and outputs true or false.

9



We formally define τ ∗ using structural induction:

Let Q,P ∈ FPV .

Base Case: P ∈ PV . What is τ ∗(P )?

The input propositonal statement is simply a propositional vari-
able P . So τ ∗(P ) returns simply τ(P ).

Inductive Step

Now we assume that P,Q ∈ FPV and that τ ∗(P) and τ ∗(Q)
return a value from {true, false}. Then:

τ ∗(¬Q) =

{
true, ifif τ ∗(Q) = false
false, otherwise

τ ∗(Q ∧ P ) =

{
true, if τ ∗(Q) = τ ∗(P ) = true
false, otherwise

τ ∗(Q ∨ P ) =

{
false, if τ ∗(Q) = τ ∗(P ) = false
true, otherwise

Semantics

• Satisfies If τ ∗(Q) = true, then we say that τ ∗ satisfies Q.

• Falsifies If τ ∗(Q) = false, then we say that τ ∗ falsifies Q.

• We can determine which truth assignments of the proposi-
tional variables satisfy a particular propositional statement
using a truth table.

10



Truth Tables

We will use {0,1} to represent {true, false}.

p1 p2 ¬p1 ¬p2 p1 ∧ p2 p1 ∨ p2 p1 → p2 p1 ↔ p2
0 0
0 1
1 0
1 1

Q: What does p1 → p2 really mean?

p1 → p2 is true only when either both p1 and p2 are true or if p1
is false. So this means that if p1 is true then p2 must be true.

Exercise: using Venn diagrams, remind yourself about the mean-
ing of → by showing when p1 → p2 is true and when it is false.

Example: Can we determine which truth assignments τ satisfy
(x ∨ y) → (¬x ∧ z)?

x y z x ∨ y ¬x ∧ z (x ∨ y) → (¬x ∧ z) τ
0 0 0 ¬x ∧ ¬y ∧ ¬z
0 0 1 ¬x ∧ ¬y ∧ z
0 1 0
0 1 1 ¬x ∧ y ∧ z
1 0 0
1 0 1
1 1 0
1 1 1

11



So, (x ∨ y) → (¬x ∧ z) is true whenever

(¬x ∧ ¬y ∧ ¬z) or (¬x ∧ ¬y ∧ z) or (¬x ∧ y ∧ z)

are true.

Therefore,

(x∨y) → (¬x∧z) ⇔ (¬x∧¬y∧¬z)∨(¬x∧¬y∧z)∨(¬x∧y∧z)

A formula that is a conjuction or a bunch of ∧s of propositional
variables or their negation is called a minterm.

DNF:

A formula is in Disjunctive Normal Form if it is the disjunction (∨)
of minterms.

Example:

(¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ z)

is the DNF of
(x ∨ y) → (¬x ∧ z)

Q: What does the DNF construction tell us about all boolean
functions?

given the output of a boolean function, we can construct an equiv-
alent DNF formula

12



Boolean Functions and Circuit Diagrams

Q: How are DNF formulas useful?

Given a DNF formula, we can can construct a parse tree and
therefore circuit diagram

Suppose we have a boolean function f(x, y, z), equivalent to the
DNF formula:

(¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ ¬z).

Then, we can convert f(x, y, z) into a parse tree:

How can we create a circuit diagram from the parse tree?

replace each ∧,∨,¬ with an AND, OR, NOT gate.

13



Conjuctive Normal Form

Let’s look at the truth table again:

x y z (x ∨ y) → (¬x ∧ z) τ
0 0 0 1
0 0 1 1
0 1 0 0 ¬x ∧ y ∧ ¬z
0 1 1 1
1 0 0 0 x ∧ ¬y ∧ ¬z
1 0 1 0 x ∧ ¬y ∧ z
1 1 0 0 x ∧ y ∧ ¬z
1 1 1 0 x ∧ y ∧ z

We used the truth assignments that make (x ∨ y) → (¬x ∧ z)
true, to construct an equivalent formula in DNF.

Q: Can we use the truth values that make (x ∨ y) → (¬x ∧ z)
false to also construct an equivalent formula?

yes!

Notice that (x ∨ y) → (¬x ∧ z) is true when:

line 3 is not true
∧ line 5 is not true
∧ line 6 is not true
∧ line 7 is not true
∧ line 8 is not true.

Therefore, (x ∨ y) → (¬x ∧ z) ⇔

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z) ∧
(¬x ∨ ¬y ∨ ¬z)

14



So truth tables are great, right??

Q: How many rows would we need in a truth table if we have k
propositional variables?

2k !!!

Goal: A proof system or method to determine whether a propo-
sitional statement is always true regardless of the truth assign-
ments.

More Definitions

Tautology We say that a propositional formula P is a tau-
tology if every truth assignment satisfies P .

Satisfiable We say that a propositional formula P is satis-
fiable if some truth assignment satisfies P .

Unsatisfiable We say that a propositional formula P is un-
satisfiable if no truth assignment satisfies P .

Examples

Tautology:

(x ∨ y) ∧ ¬x

Satisfiable:

(x ∨ y)

Unsatisfiable:

x ∧ ¬x

15



Logically Implies: P logically implies Q iff P → Q is a tautol-
ogy.

Q: When is P → Q a tautology?

When every truth assignment that satisfies P also satisfies Q.

We can denote “P logically implies Q” by P |=Q or P⇒Q.

Q: What is the difference between P ⇒ Q and P → Q?

one is syntactic and one is semantic, ie., the first talks about
the meaning of P and Q, the second is simply a formula with no
meaning. The first tells how the second behaves for ”all” truth
assignments, namely that if τ makes P true, then τ makes Q
true.

Logically Equivalent: P and Q are logically equivalent iff P⇒Q
and Q⇒P .

We denote this P⇔Q

Q: How are “P ⇔ Q” and “P ↔ Q” related?

The first is semantic and the second is syntactic. Again,P ⇔ Q
iff P ↔ Q is a tautology. So P ⇔ says something about the
behavior of P ↔ Q for all truth assignemnts τ.

16



Some Logical Equivalences

Law of Double negation: ⇔

De Morgan’s Laws: ⇔
⇔

Commutative Laws: ⇔
⇔

Associative Laws: ⇔
⇔

Distributive Laws: ⇔
⇔

Identity Laws: ⇔
⇔

→ Law: ⇔

↔ Law: ⇔

17



Propositional Logic Review

Idea Want a formal way to make inferences from boolean state-
ments.

DEFINITIONS:

• Syntax The symbols that we use to represent expressions

e.g., a programing language: a piece of code compiles if it
has proper syntax.

• Semantics The meaning of what the symbols represent.

e.g., a programming language: a piece of code meets its
specifications if the semantics are correct.

• Proposition a statement that is a sentence that can be
evaluated to true or false.

• Propositional Variable a variable that stands for or repre-
sents a primitive proposition, i.e., the simplest propositions
we are considering.

We denote the set of propositional variables as PV

• Connectives The symbols, {∨,∧,→,↔,¬}, that we use
to join propositions together to make new propositions.



Proving Two Formulas are Logically Equivalent

Example 1

(x → y) ∧ (x → z) ⇔ x → (y ∧ z)

Proof.

(x → y) ∧ (x → z) ⇔ (¬x ∨ y) ∧ (¬x ∧ z) → law
⇔ ¬x ∨ (y ∧ z) distributive law
⇔ x → (y ∧ z) → law

Example 2
(Q → P ) ∧ (¬Q → P ) ⇔ P

Proof:

(Q → P ) ∧ (¬Q → P ) ⇔ (¬Q ∨ P ) ∧ (¬¬Q ∨ P ) → law
⇔ (¬Q ∨ P ) ∧ (Q ∨ P )double negation
⇔ (P ∨ ¬Q) ∧ (P ∨Q) commutative × 2
⇔ (P ∨ (¬Q ∧Q) distributive
⇔ (P ∨ (Q ∧ ¬Q) commutative
⇔ P identity

Q: What did we just prove?

That proof by cases is valid.

18



Proving Two Formulas are NOT Equivalent

Q: How do we show that two formula are not equivalent?

find a truth assignment that satisfies one, but not the other.

Example 3

(y → x) ∧ (z → x)
??⇔ (y ∧ z) → x

Simplify a bit first:

(y → x) ∧ (z → x) ⇔ (¬y ∨ x) ∧ (¬z ∨ x) → law
⇔ (¬y ∧ ¬z) ∨ xdistributive law
⇔ ¬(y ∨ z) → xDeMorgan’s law
⇔ (y ∨ z) → x

Q: Is there a truth assignment that satisfies only one of (y∧z) →
x and (y ∨ z) → x?

yes, consider τ(x, y, z) = (0,1,0)

19



Back to Stuctural Induction...

We have already seen that p → q ⇔ ¬p ∨ q.

Q. Can all propositional formulas be rewritten using just ∨ and ¬?

An Example

Recall the definition of F . F be the smallest set such that:

Basis: The set of propositional variables belong to F , e.g.,
P,Q,R, . . . ∈ F

Induction Step: If P,Q belong to F then

1. (P ∨Q) ∈ F

2. (P ∧Q) ∈ F

3. (P → Q) ∈ F

4. ¬P ∈ F

CLAIM: Let F be as defined above. If R ∈ F then R can be
constructed using only 4. and 1. above. I.e.,

“∀R ∈ F , there exists a logically equivalent formula in
F constructed using only the operators ¬ and ∨.”

20



CLAIM: “∀R ∈ F , there exists a logically equivalent formula in F
constructed using only the operators ¬ and ∨.”

Proof. Structural induction on R ∈ F .

Basis: Suppose that R is a propositional variable, then R doesn’t
use any operators and we are done.

Inductive Step: If R is not a propositional variable, then R is
constructed from one of the 4 rules.

Case 1. R is (P ∨Q) Then by structural induction, P and Q are
constructed using only ∨ and ¬.

Case 2. R is (P ∧Q).

What is (P ∧Q) logically equivalent to in terms of ∨ and ¬?

(P ∧Q) ⇔ ¬(P ∨Q) by deMorgan’s

By structural induction, P and Q can be rewritten using only ¬
and ∨, hence so can R

Case 3. R is (P → Q).

What is (P → Q) logically equivalent to in terms of ∨ and ¬?

(P → Q) ⇔ (¬P ∨Q)

By structural induction, P and Q can be rewritten using only ¬
and ∨, hence so can R

Case 4. R is ¬P . Then by IH, P are constructed using only ∨
and ¬.

Therefore, by structural induction the claim holds.

Q. What does this tell you about ∧,∨,→ and ¬?

A.
21



Proving an item does NOT belong to a set

Consider the following set H defined by induction:

H is the smallest set such that:

Basis: The set of propositional variables belongs to H

Induction Step: if P ∈ H and Q ∈ H then

1. P ∨Q ∈ H

2. P ∧Q ∈ H

Q: Can all propositional formulas belong to H?

no, we can prove that ¬P cannot.

Q: How do we prove that an item does not belong to an induc-
tively defined set?

prove a property that holds for all items in the set, then show that
the item does not satisfy the property.

Q: Suppose that all propositional variables are assigned a value
of true. What does this tell you about every item in H?

It has truth value true, as T ∨ T ⇔ T and T ∧ T ⇔ T .

Q: How does this help us?

22



Consider again ¬P . If P ⇔ T , what is the truth value of ¬P?

Let’s prove our claim:

CLAIM 3: ∀h ∈ H, if every propositional variable in h has value
true, then h is true.

Proof. By structural induction on R ∈ H.

Basis: If R is a propositional variable and R ⇔ T then we are
done.

Inductive Step: Assume that P,Q ∈ H satisify the claim.

Case 1: R ↔ P ∨Q:

By assumption, P ⇔ T and Q ⇔ T so R ⇔ T ∨ T ⇔ T . Done.

Case 2:R ↔ P ∧Q:

By the IH, P ⇔ T and Q ⇔ T so R ⇔ T ∧ T ⇔ T . Done.

23



CLAIM 4: ¬P -∈ H.

Proof. If ¬P ∈ H, then ¬P must satisfy Claim 3. Note however,
that if P ⇔ T then ¬P ⇔ F .

Q: What does CLAIM 4 tell us about ∧ and ∨ with respect to the
set of all propositional formulas?

that they are not complete...cannot be used instead of all 4 like
∨ and ¬.

24


