Propositional Logic and Semantics

English is naturally *ambiguous*. For example, consider the following *employee* (non)recommendations and their *ambiguity* in the English language:

- "I can assure you that no person would be better for the job."
- "All in all, I cannot say enough good things about this candidate or recommend him too highly."

Goal: We want to be able to write *formal boolean expressions* such that there is no *ambiguity*.

For example, $p \to q \to r$ means $(p \to q) \to r$ or $p \to (q \to r)$?

Propositional Formulas

- Formal expressions involving conjunctions and propositional variables.
- We denote this *set* by \mathcal{F}_{PV} or simply \mathcal{F} , and define \mathcal{F} *inductively*.

Slight Diversion - Defining Sets Inductively

Defining Sets Inductively

What does the following *definition* construct?

Let *X* be the smallest set such that:

Basis: $0 \in X$

Inductive Step: if $x \in X$ then $x + 1 \in X$.

X is W

Q: How could we define the integers, \mathbb{Z} ?

Let \mathbb{Z} be the smallest set containing:

Basis: 0 t Z

Inductive Step: if $x \in \mathbb{Z}$ then $x+1 \in \mathbb{Z}$ and $x-1 \in \mathbb{Z}$.

Q: How abou the *rationals*, \mathbb{Q} ?

Basis: $\bigcirc \in \bigcirc$

Inductive Step: f_X , $y \in Q$

1. X+1 EQ

2. X-1 EQ

3. $\frac{x}{y} \in \mathbb{Q}$ where $y \neq 0$.

Q: How abou the *language of arithmetic*, $\mathcal{L}A$?

Let $\mathcal{L}A$ be the smallest set such that:

Basis: $\mathbb{Q} \in \mathcal{LA}$

Inductive Step: Suppose that $x, y \in \mathcal{LA}$ then

1.
$$(x+y) \in LA$$

2. $(x-y) \in LA$
3. $(x+y) \in LA$
4. $(x-y) \in LA$

Why define sets by induction?

Consider the following conjecture:

Let e be an element of \mathcal{LA} . Let vr(e) represent the number of characters in e.

Let op(e) represent the number of *operations*, ie., characters from $\{+, -, *, \div\}$ in e.

CLAIM 1: Let
$$P(e)$$
 be "vr $(e) = op(e) + 1$ ". Then $\forall e \in \mathcal{LA}, P(e)$.

We can *prove* this using a special version of induction called *structural induction*.

CLAIM 1: Let P(e) be "vr(e) = op(e) + 1". Then $\forall e \in \mathcal{LA}, P(e)$.

We can *prove* this using a special version of induction called structural induction.

Proof. STRUCTURAL INDUCTION on e:

- 1. Basis: Suppose $e \in \mathbb{Q}$, then $V \cap (e) = 1$, op (e) = 0, so P(e) holds.
- 2. Induction Step: Assume that $P(e_1)$ and $P(e_2)$ are true for arbitrary expressions in $\mathcal{L}\mathcal{A}$. Let $e=e_1\oplus e_2$ where $\oplus\in\{+,-,*,\div\}$.

 $\bigoplus \{+,-,*,\div\}.$ Then, $\forall r(e) = \forall r(e_1) + \forall r(e_2)$

by Structural > = OP(e,)+/+ op(ez)+/
induction = op(e) +/ + by defn.

Let's define Proposidional Logic Using Structural Induction

 \mathcal{F}_{PV} is the smallest set such that:

Base Case:

• true and false belong to \mathcal{F}_{PV} , and if $p \in PV$ then $p \in \mathcal{F}_{PV}$.

Induction Step: If p and $q \in \mathcal{F}_{PV}$, then so are

- ullet NEGATION: $\neg p$
- CONJUNCTION: $(p \land q)$
- DISJUNCTION: $(p \lor q)$
- CONDITIONAL: $(p \rightarrow q)$
- BICONDITIONAL: $(p \leftrightarrow q)$

A formula in \mathcal{F}_{PV} is *uniquely* defined, i.e., there is no *ambiguity*. (see the **Unique Readibility Theorem** in the notes.)

Q: What happens when a *propositional formula* is quite *complex*? such as,

$$(((p \land y) \lor (q \rightarrow (r \land t))) \land \neg(s \land (u \lor (v \lor (x \lor z))))))$$

This has lead to *conventions* that define an *informal* notation that uses less brackets.

Bracketing Conventions

1. drop the outer most parenthesis e.g,

(xvy) it's ok to do xvy

2. give \land and \lor precedence over \rightarrow and \leftrightarrow (like \times , + vs. <, = in arithmetic) eg.,

(xry) -> (zxp) eguiv xry -> txp

3. give \land precedence over \lor (similar to \times vs. + in arithmetic) eg.,

PAgyr (PAg)yr (3x2)+s

4. *group* from the *right* when the *same connective* appears *consecutively*, eg.,

 $P \rightarrow g \rightarrow r \quad eg \dot{w} \dot{v} \quad P \rightarrow (g \rightarrow r)$

Q: Using these conventions, how can

 $\left(\left(\left(p\wedge y\right)\vee\left(q\rightarrow\left(r\wedge t\right)\right)\right)\wedge\neg(s\wedge\left(u\vee\left(v\vee\left(x\vee z\right)\right)\right))\right)$

be simplified?

(pnyv(g>/nt)) / (51 (nvvxvz)

The Meaning of au

Q: What is the difference between a propositional formula and a propositional statement?

Propositional formula is syntachic.

once we give variables a value of true or false we have a semantic Therefore we need a method to determine the truth value of a

Therefore we need a method to determine the *truth value* of a *statement* from the *truth values* assigned to the *propositional variables*.

• Let τ be a *truth assignment*, ie., a function.

$$\tau: PV \to \{ \mathbf{true}, \mathbf{false} \}.$$

• If $p \in PV$ and τ assigns **true** to p, then we write

$$\tau(p) = \text{true}.$$

• How does τ affect a propositional statement?

- We need a *function* that behaves like τ , but *operates* on *propositional statements*.
- Let $\tau^* : \mathcal{F}_{\mathcal{PV}} \to \{\mathbf{true}, \mathbf{false}\}$. What does this mean?

I* takes as input a propositional Statement and return true of false We formally define τ^* using *structural induction*:

Let
$$Q, P \in \mathcal{F}_{PV}$$
.

Base Case:
$$P \in PV$$
. What is $\tau^*(P)$?

$$\mathcal{T}(\mathbf{F})$$
.

Inductive Step

Now we assume that $P, Q \in \mathcal{F}_{PV}$ and that $\tau^*(P)$ and $\tau^*(Q)$ return a value from $\{true, false\}$. Then:

$$\tau^*(\neg Q) = \begin{cases} \text{true}, & \text{if } \mathcal{T}^*(Q) \text{ is false}, \\ \text{false}, & \text{otherwise} \end{cases}.$$

$$\tau^*(Q \wedge P) = \begin{cases} \text{true}, & \text{if } \gamma^*(Q) = \gamma^*(P) = \text{if } \text{otherwise} \end{cases}$$

$$\tau^*(Q \vee P) = \begin{cases} \text{false,} & \text{if } \mathcal{T}^*(Q) = \mathcal{T}^*(P) = \text{false,} \\ \text{true,} & \text{otherwise} \end{cases}$$

Semantics

- Satisfies If $\tau^*(Q) = \mathbf{true}$, then we say that τ^* satisfies Q.
- **Falsifies** If $\tau^*(Q) = \text{false}$, then we say that τ^* *falsifies* Q.
- We can determine which *truth assignments* of the propositional variables *satisfy* a particular *propositional statement* using a *truth table*.

Truth Tables

We will use $\{0,1\}$ to represent $\{true, false\}$.

						. •	
p_{1}	p_2	$\neg p_1$	$\neg p_2$	$p_1 \wedge p_2$	$p_1 \vee p_2$	$p_1 \rightarrow p_2$	$p_1 \leftrightarrow p_2$
0	0)	
0	1)	
1	0					Ó	
1	1					1	

Q: What does $p_1 \rightarrow p_2$ really mean?

Exercise: using Venn diagrams, remind yourself about the meaning of \rightarrow by showing when $p_1 \rightarrow p_2$ is true and when it is false.

Example: Can we determine which *truth assignments* τ *satisfy* $(x \lor y) \to (\neg x \land z)$?

	\boldsymbol{x}	y	z	$x \lor y$	$\neg x \land z$	$(x \lor y) \to (\neg x \land z)$	au
√ →	0	0	0	7	Ò		7 × 1 4 1 7 2
- >(0	0	1	0			7X27412
	0	1	0	١			I'm tight L
<i>→</i> >	0	1	1	1)		x x y x 7-1
<u>_</u>	1	0	0	1	Ď		X Y Y Z
	1	0	1		D D	O	
	1	1	0		0	O	
	1	1	$\mid 1 \mid$	/	0		
ı				' 		$\overline{}$	

So,
$$(x \lor y) \to (\neg x \land z)$$
 is *true* whenever $(\neg x \land \neg y \land \neg z)$ or $(\neg x \land \neg y \land z)$ or $(\neg x \land y \land z)$

are true.

Therefore,

$$(x \lor y) \to (\neg x \land z) \Leftrightarrow (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$$

A *formula* that is a *conjuction* or a bunch of \land s of *propositional variables* or their *negation* is called a

DNF:

A formula is in *Disjunctive Normal Form* if it is the *disjunction* (\vee) of *minterms*.

Example:

$$(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$$

is the DNF of

$$(x \lor y) \to (\neg x \land z)$$

Q: What does the *DNF* construction tell us about *all boolean functions*?