
Propositional Logic and Semantics

English is naturally ambiguous. For example, consider the fol-
lowing employee (non)recommendations and their ambiguity in
the English language:

• “I can assure you that no person would be better for the job.”

• “All in all, I cannot say enough good things about this can-
didate or recommend him too highly.”

Goal: We want to be able to write formal boolean expressions
such that there is no ambiguity.

For example, p ! q ! r means (p ! q) ! r or p ! (q ! r)?

Propositional Formulas

• Formal expressions involving conjunctions and propositional
variables.

• We denote this set by FPV or simply F , and define F in-
ductively.

2



Slight Diversion - Defining Sets Inductively

Defining Sets Inductively

What does the following definition construct?

Let X be the smallest set such that:

Basis: 0 2 X

Inductive Step: if x 2 X then x+1 2 X.

the natural numbers

Q: How could we define the integers, Z?

Let Z be the smallest set containing:

Basis: 0 2 Z

Inductive Step: if z 2 Z then z +1 2 Z and z � 1 2 Z

Q: How abou the rationals, Q?

Basis: 0 2 Z

Inductive Step: if z, y 2 Z then

1. z +1 2 Z

2. z � 1 2 Z

3. y
z
2 Z

3



Q: How abou the language of arithmetic, LA?

Let LA be the smallest set such that:

Basis: Q 2 LA
Inductive Step: Suppose that x, y 2 LA then

1. x+ y 2 LA

2. x� y 2 LA

3. x ⇤ y 2 LA

4. x÷ y 2 LA

Why define sets by induction?

Consider the following conjecture:

Let e be an element of LA.

Let vr(e) represent the number of characters in e.

Let op(e) represent the number of operations, ie., characters
from {+,�, ⇤,÷} in e.

CLAIM 1: Let P(e) be ”vr(e) = op(e) + 1”. Then 8e 2 LA, P (e).

We can prove this using a special version of induction called
structural induction.

4



CLAIM 1: Let P(e) be ”vr(e) = op(e) + 1”. Then 8e 2 LA, P (e).

We can prove this using a special version of induction called
structural induction.

Proof. STRUCTURAL INDUCTION on e:

1. Basis: Suppose e 2 Q, then vr(e) = 1 and op(e) = 0.

2. Induction Step: Assume that P (e1) and P (e2) are true
for arbitrary expressions in LA. Let e = e1 � e2 where
� 2 {+,�, ⇤,÷}.
Then,

vr(e) = vr(e1) + vr(e2)
by structural induction op(e) = op(e1) + 1+ op(e2) + 1

op(e) = op(e1) + op(e2) + 1
Therefore, vr(e) = op(e) + 1

5



FPV is the smallest set such that:

Base Case:

• true and false belong to FPV , and if p 2 PV then
p 2 FPV .

6



Induction Step: If p and q 2 FPV , then so are

• NEGATION: ¬p

• CONJUNCTION: (p ^ q)

• DISJUNCTION: (p _ q)

• CONDITIONAL: (p ! q)

• BICONDITIONAL: (p $ q)

A formula in FPV is uniquely defined, i.e., there is no ambiguity.
(see the Unique Readibility Theorem in the notes.)

Q: What happens when a propositional formula is quite complex?
such as,

(((p ^ y) _ (q ! (r ^ t))) ^ ¬(s ^ (u _ (v _ (x _ z)))))

brackets make it hard to read.

This has lead to conventions that define an informal notation that
uses less brackets.

7



Bracketing Conventions

1. drop the outer most parenthesis e.g, (p _ q) is short hand
for p _ q

2. give ^ and _ precedence over ! and $ (like ⇥,+ vs.
<,= in arithmetic) eg., (p^q) ! (p_r) is short for p^q !
p _ r

3. give ^ precedence over _ (similar to ⇥ vs. + in arithmetic)
eg., (p ^ q) _ t is short for p ^ q _ r

4. group from the right when the same connective appears
consecutively, eg., p ! q ! r is short hand for (p ! (q !
r)).

Q: Using these conventions, how can

(((p ^ y) _ (q ! (r ^ t))) ^ ¬(s ^ (u _ (v _ (x _ z)))))

be simplified?

(p ^ y _ (q ! r ^ t)) ^ ¬(s ^ (u _ v _ x _ z))

8



The Meaning of ⌧
Q: What is the difference between a propositional formula and a
propositional statement?

A propositional formula is syntactic. Ie., it is a bunch of symbols
with no meaning assigned to them.

A statement, has a value of true or false. We need to know what
the value is of the propositional variables before we can evaluate
the statement.

Therefore we need a method to determine the truth value of a
statement from the truth values assigned to the propositional
variables.

• Let ⌧ be a truth assignment, ie., a function.

⌧ : PV ! {true, false}.

• If p 2 PV and ⌧ assigns true to p, then we write

⌧(p) = true.

• How does ⌧ affect a propositional statement?
⌧ assigns truth values to propositional variables, which in
turn, give a propositional statement meaning.

• We need a function that behaves like ⌧ , but operates on
propositional statements.

• Let ⌧ ⇤ : FPV ! {true, false}. What does this mean?
This means that ⌧ take as input a propositional statement
and outputs true or false.

9



We formally define ⌧ ⇤ using structural induction:

Let Q,P 2 FPV .

Base Case: P 2 PV . What is ⌧ ⇤(P )?

The input propositonal statement is simply a propositional vari-
able P . So ⌧ ⇤(P ) returns simply ⌧(P ).

Inductive Step

Now we assume that P,Q 2 FPV and that ⌧ ⇤(P) and ⌧ ⇤(Q)
return a value from {true, false}. Then:

⌧ ⇤(¬Q) =

⇢
true, ifif ⌧ ⇤(Q) = false
false, otherwise

⌧ ⇤(Q ^ P ) =

⇢
true, if ⌧ ⇤(Q) = ⌧ ⇤(P ) = true
false, otherwise

⌧ ⇤(Q _ P ) =

⇢
false, if ⌧ ⇤(Q) = ⌧ ⇤(P ) = false
true, otherwise

Semantics

• Satisfies If ⌧ ⇤(Q) = true, then we say that ⌧ ⇤ satisfies Q.

• Falsifies If ⌧ ⇤(Q) = false, then we say that ⌧ ⇤ falsifies Q.

• We can determine which truth assignments of the proposi-
tional variables satisfy a particular propositional statement
using a truth table.

10



Truth Tables

We will use {0,1} to represent {true, false}.

p1 p2 ¬p1 ¬p2 p1 ^ p2 p1 _ p2 p1 ! p2 p1 $ p2
0 0
0 1
1 0
1 1

Q: What does p1 ! p2 really mean?

p1 ! p2 is true only when either both p1 and p2 are true or if p1
is false. So this means that if p1 is true then p2 must be true.

Exercise: using Venn diagrams, remind yourself about the mean-
ing of ! by showing when p1 ! p2 is true and when it is false.

Example: Can we determine which truth assignments ⌧ satisfy
(x _ y) ! (¬x ^ z)?

x y z x _ y ¬x ^ z (x _ y) ! (¬x ^ z) ⌧
0 0 0 ¬x ^ ¬y ^ ¬z
0 0 1 ¬x ^ ¬y ^ z
0 1 0
0 1 1 ¬x ^ y ^ z
1 0 0
1 0 1
1 1 0
1 1 1

11



So, (x _ y) ! (¬x ^ z) is true whenever

(¬x ^ ¬y ^ ¬z) or (¬x ^ ¬y ^ z) or (¬x ^ y ^ z)

are true.

Therefore,

(x_y) ! (¬x^z) , (¬x^¬y^¬z)_(¬x^¬y^z)_(¬x^y^z)

A formula that is a conjuction or a bunch of ^s of propositional
variables or their negation is called a minterm.

DNF:

A formula is in Disjunctive Normal Form if it is the disjunction (_)
of minterms.

Example:

(¬x ^ ¬y ^ ¬z) _ (¬x ^ ¬y ^ z) _ (¬x ^ y ^ z)

is the DNF of
(x _ y) ! (¬x ^ z)

Q: What does the DNF construction tell us about all boolean
functions?

given the output of a boolean function, we can construct an equiv-
alent DNF formula

12



Boolean Functions and Circuit Diagrams

Q: How are DNF formulas useful?

Given a DNF formula, we can can construct a parse tree and
therefore circuit diagram

Suppose we have a boolean function f(x, y, z), equivalent to the
DNF formula:

(¬x ^ ¬y ^ ¬z) _ (¬x ^ y ^ z) _ (x ^ ¬y ^ z) _ (x ^ y ^ ¬z).

Then, we can convert f(x, y, z) into a parse tree:

How can we create a circuit diagram from the parse tree?

replace each ^,_,¬ with an AND, OR, NOT gate.

13



Conjuctive Normal Form

Let’s look at the truth table again:

x y z (x _ y) ! (¬x ^ z) ⌧
0 0 0 1
0 0 1 1
0 1 0 0 ¬x ^ y ^ ¬z
0 1 1 1
1 0 0 0 x ^ ¬y ^ ¬z
1 0 1 0 x ^ ¬y ^ z
1 1 0 0 x ^ y ^ ¬z
1 1 1 0 x ^ y ^ z

We used the truth assignments that make (x _ y) ! (¬x ^ z)
true, to construct an equivalent formula in DNF.

Q: Can we use the truth values that make (x _ y) ! (¬x ^ z)
false to also construct an equivalent formula?

yes!

Notice that (x _ y) ! (¬x ^ z) is true when:

line 3 is not true
^ line 5 is not true
^ line 6 is not true
^ line 7 is not true
^ line 8 is not true.

Therefore, (x _ y) ! (¬x ^ z) ,
(x _ ¬y _ z) ^ (¬x _ y _ z) ^ (¬x _ y _ ¬z) ^ (¬x _ ¬y _ z) ^
(¬x _ ¬y _ ¬z)

14



So truth tables are great, right??

Q: How many rows would we need in a truth table if we have k
propositional variables?

2k !!!

Goal: A proof system or method to determine whether a propo-
sitional statement is always true regardless of the truth assign-
ments.

More Definitions

Tautology We say that a propositional formula P is a tau-
tology if every truth assignment satisfies P .

Satisfiable We say that a propositional formula P is satis-
fiable if some truth assignment satisfies P .

Unsatisfiable We say that a propositional formula P is un-
satisfiable if no truth assignment satisfies P .

Examples

Tautology:
(x _ y) ^ ¬x

Satisfiable:
(x _ y)

Unsatisfiable:
x ^ ¬x

15



Logically Implies: P logically implies Q iff P ! Q is a tautol-
ogy.

Q: When is P ! Q a tautology?

When every truth assignment that satisfies P also satisfies Q.

We can denote “P logically implies Q” by P |=Q or P)Q.

Q: What is the difference between P ) Q and P ! Q?

one is syntactic and one is semantic, ie., the first talks about
the meaning of P and Q, the second is simply a formula with no
meaning. The first tells how the second behaves for ”all” truth
assignments, namely that if ⌧ makes P true, then ⌧ makes Q
true.

Logically Equivalent: P and Q are logically equivalent iff P)Q
and Q)P .

We denote this P,Q

Q: How are “P , Q” and “P $ Q” related?

The first is semantic and the second is syntactic. Again,P , Q
iff P $ Q is a tautology. So P , says something about the
behavior of P $ Q for all truth assignemnts ⌧.

16



Some Logical Equivalences

Law of Double negation: ,

De Morgan’s Laws: ,
,

Commutative Laws: ,
,

Associative Laws: ,
,

Distributive Laws: ,
,

Identity Laws: ,
,

! Law: ,

$ Law: ,

17



Propositional Logic Review

Idea Want a formal way to make inferences from boolean state-
ments.

DEFINITIONS:

• Syntax The symbols that we use to represent expressions
e.g., a programing language: a piece of code compiles if it
has proper syntax.

• Semantics The meaning of what the symbols represent.
e.g., a programming language: a piece of code meets its
specifications if the semantics are correct.

• Proposition a statement that is a sentence that can be
evaluated to true or false.

• Propositional Variable a variable that stands for or repre-
sents a primitive proposition, i.e., the simplest propositions
we are considering.
We denote the set of propositional variables as PV

• Connectives The symbols, {_,^,!,$,¬}, that we use
to join propositions together to make new propositions.



Proving Two Formulas are Logically Equivalent

Example 1

(x ! y) ^ (x ! z) , x ! (y ^ z)

Proof.

(x ! y) ^ (x ! z) , (¬x _ y) ^ (¬x ^ z) ! law
, ¬x _ (y ^ z) distributive law
, x ! (y ^ z) ! law

Example 2
(Q ! P ) ^ (¬Q ! P ) , P

Proof:

(Q ! P ) ^ (¬Q ! P ) , (¬Q _ P ) ^ (¬¬Q _ P ) ! law
, (¬Q _ P ) ^ (Q _ P )double negation
, (P _ ¬Q) ^ (P _Q) commutative ⇥ 2
, (P _ (¬Q ^Q) distributive
, (P _ (Q ^ ¬Q) commutative
, P identity

Q: What did we just prove?

That proof by cases is valid.

18



Proving Two Formulas are NOT Equivalent

Q: How do we show that two formula are not equivalent?

find a truth assignment that satisfies one, but not the other.

Example 3

(y ! x) ^ (z ! x)
??, (y ^ z) ! x

Simplify a bit first:

(y ! x) ^ (z ! x) , (¬y _ x) ^ (¬z _ x) ! law
, (¬y ^ ¬z) _ xdistributive law
, ¬(y _ z) ! xDeMorgan’s law
, (y _ z) ! x

Q: Is there a truth assignment that satisfies only one of (y^z) !
x and (y _ z) ! x?

yes, consider ⌧(x, y, z) = (0,1,0)

19



Back to Stuctural Induction...

We have already seen that p ! q , ¬p _ q.

Q. Can all propositional formulas be rewritten using just _ and ¬?

An Example

Recall the definition of F . F be the smallest set such that:

Basis: The set of propositional variables belong to F , e.g.,
P,Q,R, . . . 2 F
Induction Step: If P,Q belong to F then

1. (P _Q) 2 F

2. (P ^Q) 2 F

3. (P ! Q) 2 F

4. ¬P 2 F

CLAIM: Let F be as defined above. If R 2 F then R can be
constructed using only 4. and 1. above. I.e.,

“8R 2 F , there exists a logically equivalent formula in
F constructed using only the operators ¬ and _.”

20



CLAIM: “8R 2 F , there exists a logically equivalent formula in F
constructed using only the operators ¬ and _.”

Proof. Structural induction on R 2 F .

Basis: Suppose that R is a propositional variable, then R doesn’t
use any operators and we are done.

Inductive Step: If R is not a propositional variable, then R is
constructed from one of the 4 rules.

Case 1. R is (P _Q) Then by structural induction, P and Q are
constructed using only _ and ¬.

Case 2. R is (P ^Q).

What is (P ^Q) logically equivalent to in terms of _ and ¬?

(P ^Q) , ¬(P _Q) by deMorgan’s

By structural induction, P and Q can be rewritten using only ¬
and _, hence so can R

Case 3. R is (P ! Q).

What is (P ! Q) logically equivalent to in terms of _ and ¬?

(P ! Q) , (¬P _Q)

By structural induction, P and Q can be rewritten using only ¬
and _, hence so can R

Case 4. R is ¬P . Then by IH, P are constructed using only _
and ¬.

Therefore, by structural induction the claim holds.

Q. What does this tell you about ^,_,! and ¬?

A.
21



Proving an item does NOT belong to a set

Consider the following set H defined by induction:

H is the smallest set such that:

Basis: The set of propositional variables belongs to H
Induction Step: if P 2 H and Q 2 H then

1. P _Q 2 H

2. P ^Q 2 H

Q: Can all propositional formulas belong to H?

no, we can prove that ¬P cannot.

Q: How do we prove that an item does not belong to an induc-
tively defined set?

prove a property that holds for all items in the set, then show that
the item does not satisfy the property.

Q: Suppose that all propositional variables are assigned a value
of true. What does this tell you about every item in H?

It has truth value true, as T _ T , T and T ^ T , T .

Q: How does this help us?

22



Consider again ¬P . If P , T , what is the truth value of ¬P?

Let’s prove our claim:

CLAIM 3: 8h 2 H, if every propositional variable in h has value
true, then h is true.

Proof. By structural induction on R 2 H.

Basis: If R is a propositional variable and R , T then we are
done.

Inductive Step: Assume that P,Q 2 H satisify the claim.

Case 1: R $ P _Q:

By assumption, P , T and Q , T so R , T _ T , T . Done.

Case 2:R $ P ^Q:

By the IH, P , T and Q , T so R , T ^ T , T . Done.

23



CLAIM 4: ¬P 62 H.

Proof. If ¬P 2 H, then ¬P must satisfy Claim 3. Note however,
that if P , T then ¬P , F .

Q: What does CLAIM 4 tell us about ^ and _ with respect to the
set of all propositional formulas?

that they are not complete...cannot be used instead of all 4 like
_ and ¬.

24


