Propositional Logic and Semantics

English is naturally *ambiguous*. For example, consider the following *employee* (*non*)*recommendations* and their *ambiguity* in the English language:

- "I can assure you that no person would be better for the job."
- "All in all, I cannot say enough good things about this candidate or recommend him too highly."

Goal: We want to be able to write *formal boolean expressions* such that there is no *ambiguity*.

For example, $p \rightarrow q \rightarrow r$ means $(p \rightarrow q) \rightarrow r$ or $p \rightarrow (q \rightarrow r)$?

Propositional Formulas

- Formal expressions involving *conjunctions* and *propositional variables*.
- We denote this *set* by $\mathcal{F}_{\mathcal{PV}}$ or simply \mathcal{F} , and define \mathcal{F} *inductively*.

Slight Diversion - Defining Sets Inductively

Defining Sets Inductively

What does the following *definition* construct?

Let X be the smallest set such that:

Basis: $0 \in X$

Inductive Step: if $x \in X$ then $x + 1 \in X$.

Q: How could we define the integers, \mathbb{Z} ?

Let $\ensuremath{\mathbb{Z}}$ be the smallest set containing:

Basis:

Inductive Step:

Q: How abou the *rationals*, Q?

Basis:

Inductive Step:

1.

2.

3.

Q: How abou the *language of arithmetic*, $\mathcal{L}A$?

Let \mathcal{LA} be the smallest set such that:

Basis: $\mathbb{Q} \in \mathcal{LA}$

Inductive Step: Suppose that $x, y \in \mathcal{LA}$ then

1. 2.

3.

4.

Why define sets by induction?

Consider the following conjecture:

Let e be an element of \mathcal{LA} .

Let vr(e) represent the number of characters in e.

Let op(e) represent the number of *operations*, i.e., characters from $\{+, -, *, \div\}$ in e.

CLAIM 1: Let P(e) be "vr(e) = op(e) + 1". Then $\forall e \in \mathcal{LA}, P(e)$.

We can *prove* this using a special version of induction called *structural induction*.

CLAIM 1: Let P(e) be "vr(e) = op(e) + 1". Then $\forall e \in \mathcal{LA}, P(e)$.

We can *prove* this using a special version of induction called *structural induction*.

Proof. STRUCTURAL INDUCTION on e:

- 1. **Basis:** Suppose $e \in \mathbb{Q}$, then
- 2. Induction Step: Assume that $P(e_1)$ and $P(e_2)$ are *true* for arbitrary expressions in \mathcal{LA} . Let $e = e_1 \oplus e_2$ where $\oplus \in \{+, -, *, \div\}$.

Then,

 $\mathcal{F}_{\mathcal{P}\mathcal{V}}$ is the smallest set such that:

Base Case:

• true and false belong to $\mathcal{F}_{\mathcal{PV}}$, and if $p \in PV$ then $p \in \mathcal{F}_{\mathcal{PV}}$.

Induction Step: If p and $q \in \mathcal{F}_{\mathcal{PV}}$, then so are

- **NEGATION**: $\neg p$
- CONJUNCTION: $(p \land q)$
- DISJUNCTION: $(p \lor q)$
- CONDITIONAL: $(p \rightarrow q)$
- BICONDITIONAL: $(p \leftrightarrow q)$

A formula in $\mathcal{F}_{\mathcal{PV}}$ is *uniquely* defined, i.e., there is no *ambiguity*. (see the **Unique Readibility Theorem** in the notes.)

Q: What happens when a *propositional formula* is quite *complex*? such as,

$$(((p \land y) \lor (q \to (r \land t))) \land \neg (s \land (u \lor (v \lor (x \lor z)))))$$

This has lead to *conventions* that define an *informal* notation that uses less brackets.

Bracketing Conventions

- 1. drop the outer most parenthesis e.g,
- 2. give \land and \lor precedence over \rightarrow and \leftrightarrow (like \times , + *vs.* <, = in *arithmetic*) eg.,
- 3. give \land precedence over \lor (similar to \times *vs.* + in *arithmetic*) eg.,
- 4. *group* from the *right* when the *same connective* appears *consecutively*, eg.,

Q: Using these *conventions*, how can

 $(((p \land y) \lor (q \to (r \land t))) \land \neg (s \land (u \lor (v \lor (x \lor z)))))$

be *simplified*?

The Meaning of τ

Q: What is the difference between a *propositional formula* and a *propositional statement*?

Therefore we need a method to determine the *truth value* of a *statement* from the *truth values* assigned to the *propositional variables*.

• Let τ be a *truth assignment*, i.e., a function.

 $\tau : PV \to \{ \mathbf{true}, \mathbf{false} \}.$

• If $p \in PV$ and τ assigns **true** to p, then we write

 $\tau(p) =$ true.

- How does τ affect a propositional statement?
- We need a *function* that behaves like τ , but *operates* on *propositional statements*.
- Let $\tau^* : \mathcal{F}_{\mathcal{PV}} \to \{ true, false \}$. What does this mean?

We formally define τ^* using *structural induction*:

Let $\mathbf{Q}, \mathbf{P} \in \mathcal{F}_{\mathcal{PV}}$.

Base Case: $P \in PV$. What is $\tau^*(P)$?

Inductive Step

Now we assume that $\mathbf{P}, \mathbf{Q} \in \mathcal{F}_{\mathcal{PV}}$ and that $\tau^*(\mathbf{P})$ and $\tau^*(\mathbf{Q})$ return a value from {true, false}. Then:

 $\tau^*(\neg Q) = \begin{cases} \text{true}, & \text{if} \\ \text{false}, & \text{otherwise} \end{cases}$

 $\tau^*(Q \wedge P) = \begin{cases} \text{true}, & \text{if} \\ \text{false}, & \text{otherwise} \end{cases}$

 $\tau^*(Q \lor P) = \begin{cases} \text{false,} & \text{if} \\ \text{true,} & \text{otherwise} \end{cases}$

Semantics

- Satisfies If $\tau^*(Q) = true$, then we say that τ^* satisfies Q.
- **Falsifies** If $\tau^*(Q) =$ false, then we say that τ^* *falsifies* Q.
- We can determine which *truth assignments* of the propositional variables *satisfy* a particular *propositional statement* using a *truth table*.

Truth Tables

We will use $\{0,1\}$ to represent $\{true, false\}$.

p_1	p_2	$ \neg p_1$	$\neg p_2$	$p_1 \wedge p_2$	$p_1 \lor p_2$	$p_1 \rightarrow p_2$	$p_1 \leftrightarrow p_2$
0	0						
0	1						
1	0						
1	1						

Q: What does $p_1 \rightarrow p_2$ really mean?

Exercise: using Venn diagrams, remind yourself about the meaning of \rightarrow by showing when $p_1 \rightarrow p_2$ is true and when it is false.

Example: Can we determine which *truth assignments* τ *satisfy* $(x \lor y) \rightarrow (\neg x \land z)$?

x	y	z	$x \lor y$	$\neg x \land z$	$(x \lor y) \to (\neg x \land z)$	au
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

So,
$$(x \lor y) \to (\neg x \land z)$$
 is *true* whenever
 $(\neg x \land \neg y \land \neg z)$ or $(\neg x \land \neg y \land z)$ or $(\neg x \land y \land z)$

are true.

Therefore,

 $(x \lor y) \to (\neg x \land z) \Leftrightarrow (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$

A formula that is a conjuction or a bunch of \land s of propositional variables or their negation is called a

DNF:

A formula is in *Disjunctive Normal Form* if it is the *disjunction* (\lor) of *minterms*.

Example:

$$(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land z)$$

is the DNF of

$$(x \lor y) \to (\neg x \land z)$$

Q: What does the *DNF* construction tell us about *all boolean functions*?

Boolean Functions and Circuit Diagrams

Q: How are *DNF* formulas useful?

Suppose we have a *boolean function* f(x, y, z), *equivalent* to the *DNF* formula:

 $(\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land z) \lor (x \land \neg y \land z) \lor (x \land y \land \neg z).$

Then, we can convert f(x, y, z) into a *parse tree*:

How can we create a *circuit diagram* from the *parse tree*?

Conjuctive Normal Form

Let's look at the truth table again:

x	y	z	$(x \lor y) \to (\neg x \land z)$	au
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

We used the *truth assignments* that make $(x \lor y) \rightarrow (\neg x \land z)$ true, to construct an equivalent formula in *DNF*.

Q: Can we use the *truth values* that make $(x \lor y) \to (\neg x \land z)$ *false* to also construct an *equivalent formula*?

Notice that $(x \lor y) \to (\neg x \land z)$ is *true* when:

Therefore, $(x \lor y) \to (\neg x \land z) \Leftrightarrow$

So truth tables are great, right??

Q: How many *rows* would we need in a truth table if we have *k propositional variables*?

Goal: A *proof system* or *method to determine* whether a *propositional statement* is always true regardless of the truth assignments.

More Definitions

TautologyWe say that a propositional formula P is a tau-
tology iftology iftruth assignment satisfies P.

Satisfiable We say that a *propositional formula P* is *satisfiable* if ______ truth assignment *satisfies P*.

Unsatisfiable We say that a *propositional formula P* is *unsatisfiable* if ______ truth assignment *satisfies P*.

Examples

Tautology:

Satisfiable:

Unsatisfiable:

Logically Implies: *P* logically implies *Q* iff $P \rightarrow Q$ is a tautology.

Q: When is $P \rightarrow Q$ a *tautology*?

We can denote "*P logically implies Q*" by $P \models Q$ or $P \Rightarrow Q$.

Q: What is the difference between $P \Rightarrow Q$ and $P \rightarrow Q$?

Logically Equivalent: P and Q are logically equivalent iff $P \Rightarrow Q$ and $Q \Rightarrow P$.

We denote this $P \Leftrightarrow Q$

Q: How are " $P \Leftrightarrow Q$ " and " $P \leftrightarrow Q$ " related?

Some Logical Equivalences

Law of Double negation:	\Leftrightarrow
De Morgan's Laws:	$ \substack{\Leftrightarrow\\ \Leftrightarrow} $
Commutative Laws:	$ \Leftrightarrow \\ \Leftrightarrow \\$
Associative Laws:	$ \substack{\Leftrightarrow\\ \Leftrightarrow} $
Distributive Laws:	$ \substack{\Leftrightarrow\\ \Leftrightarrow} $
Identity Laws:	$ \Leftrightarrow \\ \Leftrightarrow \\$
\rightarrow Law:	\Leftrightarrow
\leftrightarrow Law:	\Leftrightarrow

Propositional Logic Review

Idea Want a *formal* way to make inferences from *boolean statements*.

DEFINITIONS:

- **Syntax** The *symbols* that we use to *represent expressions* e.g., a programing language: a piece of code *compiles* if it has *proper syntax*.
- **Semantics** The *meaning* of what the *symbols represent*.

e.g., a programming language: a piece of code meets its *specifications* if the *semantics* are correct.

- **Proposition** a *statement* that is a *sentence* that can be *evaluated* to **true** or **false**.
- **Propositional Variable** a *variable* that stands for or represents a *primitive proposition*, i.e., the *simplest propositions* we are considering.

We denote the set of propositional variables as PV

• **Connectives** The *symbols*, {∨, ∧, →, ↔, ¬}, that we use to join *propositions* together to make *new propositions*.

Proving Two Formulas are Logically Equivalent Example 1

$$(x \to y) \land (x \to z) \Leftrightarrow x \to (y \land z)$$

Proof.

$$(x o y) \wedge (x o z) \Leftrightarrow \Leftrightarrow x o (y \wedge z) \to \mathsf{law}$$

Example 2

$$(Q \to P) \land (\neg Q \to P) \Leftrightarrow P$$

Proof:

Q: What did we just prove?

Proving Two Formulas are NOT Equivalent

Q: How do we show that two formula are **not** equivalent?

Example 3

$$(y \to x) \land (z \to x) \stackrel{??}{\Leftrightarrow} (y \land z) \to x$$

Simplify a bit first:

 $\begin{array}{ccc} (y \rightarrow x) \land (z \rightarrow x) & \Leftrightarrow \\ & \Leftrightarrow \\ & \Leftrightarrow \\ & \Leftrightarrow \end{array}$

Q: Is there a *truth assignment* that satisfies *only* one of $(y \land z) \rightarrow x$ and $(y \lor z) \rightarrow x$?

Back to Stuctural Induction...

We have already seen that $p \to q \Leftrightarrow \neg p \lor q$.

Q. Can all *propositional formulas* be rewritten using just \lor and \neg ?

An Example

Recall the definition of \mathcal{F} . \mathcal{F} be the smallest set such that:

Basis: The set of *propositional variables* belong to \mathcal{F} , e.g., $P, Q, R, \ldots \in \mathcal{F}$

Induction Step: If P, Q belong to \mathcal{F} then

- 1. $(P \lor Q) \in \mathcal{F}$
- 2. $(P \land Q) \in \mathcal{F}$
- 3. $(P \rightarrow Q) \in \mathcal{F}$
- 4. $\neg P \in \mathcal{F}$

CLAIM: Let \mathcal{F} be as defined above. If $R \in \mathcal{F}$ then R can be *constructed* using only 4. and 1. above. I.e.,

" $\forall R \in \mathcal{F}$, there exists a logically equivalent formula in \mathcal{F} constructed using only the operators \neg and \lor ."

CLAIM: " $\forall R \in \mathcal{F}$, there exists a logically equivalent formula in \mathcal{F} constructed using only the operators \neg and \lor ."

Proof. Structural induction on $R \in \mathcal{F}$.

Basis:

Inductive Step: If R is not a propositional variable, then R is constructed from one of the 4 rules.

Case 1. R is $(P \lor Q)$

Case 2. *R* is $(P \land Q)$. What is $(P \land Q)$ logically equivalent to in terms of \lor and \neg ?

Case 3. *R* is $(P \rightarrow Q)$. What is $(P \rightarrow Q)$ logically equivalent to in terms of \lor and \neg ?

Case 4. R is $\neg P$.

Therefore, by structural induction the claim holds. \Box

Q. What does this tell you about \land, \lor, \rightarrow and \neg ?

Α.

Proving an item does NOT belong to a set

Consider the following set \mathcal{H} defined by *induction*:

 $\ensuremath{\mathcal{H}}$ is the smallest set such that:

Basis: The set of *propositional variables* belongs to \mathcal{H}

Induction Step: if $P \in \mathcal{H}$ and $Q \in \mathcal{H}$ then

1. $P \lor Q \in \mathcal{H}$

2. $P \land Q \in \mathcal{H}$

Q: Can all *propositional formulas* belong to *H*?

Q: How do we prove that an item *does not belong* to an *inductively defined set*?

Q: Suppose that all *propositional variables* are assigned a *value* of *true*. What does this tell you about *every* item in \mathcal{H} ?

Q: How does this help us?

Consider again $\neg P$. If $P \Leftrightarrow T$, what is the *truth value* of $\neg P$?

Let's prove our claim:

CLAIM 3: $\forall h \in \mathcal{H}$, if every propositional variable in *h* has value true, then *h* is true.

Proof. By structural induction on $R \in \mathcal{H}$.

Basis:

Inductive Step: Assume that $P, Q \in \mathcal{H}$ satisify the claim.

Case 1: $R \leftrightarrow P \lor Q$:

Case 2: $R \leftrightarrow P \land Q$:

CLAIM 4: $\neg P \notin \mathcal{H}$.

Proof.

Q: What does CLAIM 4 tell us about \land and \lor with respect to the *set* of all *propositional formulas*?