Recall our recursive multiply algorithm:

```
PRECONDITION:
 x and y are both binary bit arrays of length n_{r}
n a power of 2.
POSTCONDITION:
 Returns a binary bit array equal to
 the product of x and y.
 Rec_Multiply_2 (x, y):
 if (len(x) == 1):
    return (x[0] *y[0])
 xl = x[n/2:n]
 xh = x[0:n/2]
 yl = x[n/2:n]
 yh = x[0:n/2]
  p1 = Rec_Multiply_2(xh, yh)
  p2 = Rec_Multiply_2 (xh+xl, yh+yl)
  p3 = REC_MULTIPLY_2(x1, y1)
 p2 = binary_add(p2, -p1, -p3)
 p2 = SHIFT(p2, n/2)
 p1 = shift(p1, n)
 return BINARY_ADD (p1, p2, p3)
```

Let's prove that REC_MULTIPLY_2 (x, y) does indeed return the *product* of x and y.

Proof by complete induction.

- 1. Define P(n): let $m = 2^n$, $Rec_M \cup h_p / (x, y)$ returns xy where x and y are m-bit binary numbers. RTP: P(n) is true for all $n \in \mathbb{N}$ and n = 1.
- 2. Base Case: n=D, so length of Xiy are J. X[0] y[o] returns correct value

3. Inductive Hypothesis: Assume that P(n) holds

4. Inductive Step: Prove P(n+1) holds. By J.H. Rec-multiply (Xn1Yn) Rec-Multiply (Xn+X,1Yn+Ye) Rec-Multiply (Xn+X,1Yn+Ye) all redurn the correct groducts. berause Ingth of XL1X01Yn Ye 15 2°. By Gamss: 7.2° + (p2-P, -P,). 2' +P3 = X.B

Another Recursive Algorithm–Quicksort

```
PRECONDITION:
```

A is an array/list of integers.

POSTCONDITION:

Returns the integers of A sorted in increasing order.

def Quicksort (A) :

```
if (len(A) == 1 or len(A) == 0):
   return (A)
 else:
   # make A[0] the pivot
   L, M, U = [], [], []
   for value in A:
    if (A[0] < value):
      L.append(value)
    elif (A[0] == value):
      M.append(value)
    else:
      U.append(value)
   final = QUICKSORT(L)
   final.append(M)
   final.append(QUICKSORT(U))
   return(final)
end Quicksort
```

Q: Which type of *induction* should we use to prove that **Quicksort** is correct?

Correctness of Quicksort

Jince Ien(m) >11, Ien(L) ≤n-1, Ien(U) <n-1 By 1.H. Quicksolt sorts L and U groperly. ... Appending M to L and U to LM creates a sorted list.

Correctness of Iterative Algorithms

Q: What is an *iterative algorithm*?

Typical Iterative Algorithm Structure

Precondition: Requirements about the input.
Postcondition: Requirements about the output.
variable declarations
various statements
begin loop
 more statements
 :
 exit statement
 more statements
end loop
more statements

Q: Which part of the algorithm is the hardest to prove *correct*?

To prove an algorithm is correct, we need to

- prove that the *looping* portion has a *well defined behavior*
- and that this *behavior* ensures that the *postcondition* is *met*.

The well defined behavior is called a loop invariant.

Q: How do we express a loop invariant? Define P(n) to be the state of the loop after the nth iteration Q: How does the postcondition relate to P(n)? if the loop exits after the kth iteration P(K) should imply the post condition.

Q: Does this remind you of something else we have seen?

Keys to Proving an Iterative Algorithm Correct

We will use a *3-step* process.

 Partial Correctness Assume the terminates and show the bop sadisfier an invariant.
 Proof of Termination: Show given Reprecondidan that the loop exits.
 Total Correctness New we know the loop exits, Use the loop invariant to prove the post and the is met.

A Toy Example

```
PRECONDITION: Input is a natural number \mathbf{x}.
POSTCONDITION: Output is 2^x.
```

```
def Power( x ):
  current = 1
  count = 0
while ( count < x ):
    current = current*2
    count = count+1
return(current)
```

Q: What is the *exit condition*?

```
count < x?
```

Q: What is the *invariant*? ie., what is true *each iteration* of the *loop*?

Let's look at a few iterations of the loop to find a pattern:

n	P(n)	
0	current = 🤳	count = 🖸
1	current = 2	count = J
2	current = 4	count = 2
3	current = {	count = 3
4	current =	count = 4
:		•
i	current = 2^{L}	count = L

Notation:

We will represent the *value* of a variable x during the k^{th} *iteration* of the loop by x_k .

What is the loop invariant
$$P(k)$$
?
 $P(k): |f + f_k \in K^+$ iteration r_k 'st, current $= 2^k$
 $Gint = 2^k$
 Gi

If there is not an $(i + 1)^{si}$ iteration then P(i + 1) is trivially true. why??.

Otherwise, there exists an $(i + 1)^{st}$ iteration:

$$current_{i+1} = [u_{i,i} + i] + i = u_{i+1} = u_{i+1} + i = i + i = i + i = i + i$$

$$= 2^{i} \cdot 2 + i = i + i = i + i = i + i = 1 + i$$

Therefore P(i) holds for all $i \in \mathbb{N}$.

Showing Termination

Theorem 2.5 (in the notes) *Every decreasing sequence of natural numbers is finite.*

Q: How does Theorem 2.5 follow from the Well Ordering Principle? Consider as of natural numbers S, Shar a small-st'value, so conside the set as a decreasing seguence • Consider defining $d_i = x - \text{count}_i$. • What do we know about d_i versus d_{i+1} : di+1=x-countin = x- (i+1) = x- countin -1 • How does the *exit condition* relate to d_i ? $= d_i \cdot - d_i$ dizo is the exit and tim • How do we kow that the *loop* must *terminate*? Since the di are decreasing, natural Numbers, thm. 2.5 says the Seguna and s When Q: Given that the loop invariant holds and that the loop termi-nates, is the post condition met when the exit condition is true? di=0 > counti=x => i=x by P(i) current:= 2× by F(i).

To show *termination* define a *decreasing sequence* of *natural* numbers and use the *W.O.P*.

Multiplication – Take 2

```
PRECONDITION: m \in \mathbb{N}, n \in \mathbb{Z}.
POSTCONDITION: Returns the value m \cdot n.
```

MULTIPLY(m, n)

1.	int x = m;
2.	int y = n;
3.	int z = 0;
4.	while $(x \neq 0)$
5.	if $(x \mod 2 = 1)$
6.	z = z + y;
7.	$x = x \operatorname{div} 2;$
8	$y = y \cdot 2;$
9.	return z;

Q: Why does **MULTIPLY** (n, m) work?

Consider:

- $x \cdot y = y + y + y + \dots + y$ (x times)
- If x is even then $x \cdot y = 2(y + y + y + \dots + y)$ (x/2 times)
- If x is odd then $x \cdot y = \dots$
- Once x = 0, xy =

Q: Why might we want to use such an algorithm to multiply?

For *correctness*, we need to prove *three* things:

- 1.
- 2.
- 3.

Partial Correctness

Q: Which variables would we *expect* to partake in the *loop invariant*?

Loop Invariant: P(i): "If the *i*th iteration exists then

 $mn = z_i + x_i y_i$

Q: Why do we *believe* this loop invariant?

Claim: P(i) is true for all $i \in \mathbb{N}$.

Proof.

- 1. Base Case:
- 2. Induction Hypothesis: Assume that P(i) is true for *arbitrary* $i \in \mathbb{N}$.

3 Induction Step: RTP: P(i+1) is true.

Assume that the $(i + 1)^{st}$ iteration exists:

- Since P(i) is true:
- If $x_i \mod 2 \neq 1$ then: $z_{i+1} =$

 $x_{i+1} = \qquad \qquad y_{i+1} =$

Therefore, $z_{i+1} =$

• If $x_i \mod 2 = 1$ then:

 $z_{i+1} =$

 $x_{i+1} = \qquad \qquad y_{i+1} =$

Therefore,

$$z_{i+1} =$$

Therefore, P(i) holds for all $i \in \mathbb{N}$. \Box

Termination

Q: How can we show that the loop *terminates*?

Q: What is such a *sequence*?

Claim: The loop will terminate.

Proof.