
Recall our recursive multiply algorithm:

PRECONDITION:
x and y are both binary bit arrays of length n,

n a power of 2.
POSTCONDITION:
Returns a binary bit array equal to
the product of x and y.

REC MULTIPLY 2(x, y):
if (len(x) == 1):

return (x[0]*y[0])

xl = x[n/2:n]
xh = x[0:n/2]
yl = x[n/2:n]
yh = x[0:n/2]

p1 = REC MULTIPLY 2(xh, yh)
p2 = REC MULTIPLY 2(xh+xl, yh+yl)
p3 = REC MULTIPLY 2(xl, yl)

p2 = BINARY ADD(p2,-p1, -p3)
p2 = SHIFT(p2, n/2)
p1 = SHIFT(p1,n)
return BINARY ADD(p1,p2,p3)

12

Let’s prove that REC MULTIPLY 2(x,y) does indeed return the
product of x and y.

Proof by complete induction.

1. Define P (n):

Rec Multiply 2(x, y) meets the postcondition, i.e., termi-
nates and returns the product of x and y where x and y are
n bit binary numbers and ∃k ∈ N, n = 2k.

RTP: P (n) is true for all even n ∈ N and n = 1.

2. Base Case:

n = 1 Then xy is returned.

3. Inductive Hypothesis:

Assume that for arbitrary n ∈ N, n = 2k, that P (m) is true
for all m < n, m a power of 2.

4. Inductive Step:

By the IH, each call to Rec Multiply 2 correctly returns the
product of the parameters. The is guaranteed since each
parameter is a power of 2 and < n.

by Gauss’ observation, the sum p1 · 2n + (p2 − p1 − p3) ·
2n/2 + p3 = xy. Therefore, Rec Multiply 2 terminates and
returns xy meeting the post-condition.

13

Another Recursive Algorithm–Quicksort

PRECONDITION:
A is an array/list of integers.

POSTCONDITION:
Returns the integers of A sorted in increasing

order.

def QUICKSORT(A):
if (len(A)==1 or len(A)==0):
return (A)

else:
make A[0] the pivot
L, M, U = [], [], []
for value in A:
if (A[0] < value):
L.append(value)

elif (A[0] == value):
M.append(value)

else:
U.append(value)

final = QUICKSORT(L)
final.append(M)
final.append(QUICKSORT(U))
return(final)

end Quicksort

Q: Which type of induction should we use to prove that Quicksort
is correct?

complete induction.

14

Correctness of Quicksort

Proof. By complete induction on n = len(A).

1. Define P (n):

Let P (n) be “Given a non-empty array A where n = len(A),
Quicksort terminates and returns a list containing the inte-
gers in A sorted in increasing order.

2. IH: Suppose that P (k) holds for all 0 ≤ k < n.

3. Case 1. n = 0 or n = 1

If n = 0 or 1, then QUICKSORT terminates and returns A.
Notice That A is sorted in increasing order and contains the
integers of A.

4. Case 2. n ≥ 2

Notice that every value in A belongs to exactly one of L,M
or U . In addition, every value in L is less than every value
in M and every value in M is less than every value in U .

Notice that len(L(< len(A) = n and that len(U) < len(A) =
n so U and L satisfy the precondition. Therefore, we can
apply the IH, and Quicksort terminates and returns U
and L each sorted in increasing order.

Therefore, the concatenation of L,M,U contains the inte-
gers of A sorted in increasing order satisfying the postcon-
dition.

15

Correctness of Iterative Algorithms

Q: What is an iterative algorithm?

One that has a loop...i.e., not recursive.

Typical Iterative Algorithm Structure

Precondition: Requirements about the input.
Postcondition: Requirements about the output.

variable declarations
various statements
begin loop

more statements
...
exit statement
more statements

end loop
more statements

Q: Which part of the algorithm is the hardest to prove correct?

the loop.

To prove an algorithm is correct, we need to

• prove that the looping portion has a well defined behavior

• and that this behavior ensures that the postcondition is met.

The well defined behavior is called a loop invariant.

16

Q: How do we express a loop invariant?

It is a statement P (n) that is true for the nth iteration of the loop.

Q: How does the postcondition relate to P (n)?

If the loop terminates on the kth iteration, then P (k) should meet
the postcondition given the other commands after loop termina-
tion.

Q: Does this remind you of something else we have seen?

Proof by induction.

Keys to Proving an Iterative Algorithm Correct

We will use a 3-step process.

1. Partial Correctness Assume that the program (loop) ter-
minates and show that the loop satisfies an invariant

2. Proof of Termination Prove that given the precondition,
the program terminates.

3. Total Correctness Now that we KNOW that the program
terminates, use the loop invariant to show that when it ter-
minates, the values of the variables are as required by the
postcondition.

17

A Toy Example

PRECONDITION: Input is a natural number x.
POSTCONDITION: Output is 2x.

def POWER(x):
current = 1
count = 0
while (count < x):
current = current*2
count = count+1

return(current)

Q: What is the exit condition?

count < x

Q: What is the invariant? ie., what is true each iteration of the
loop?

Let’s look at a few iterations of the loop to find a pattern:

n P(n)
0 current = 1 count = 0
1 current = 2 count =1
2 current =4 count =2
3 current =8 count =3
4 current = 16 count =4
...
i current = 2i count =i

18

Notation:

We will represent the value of a variable x during the kth iteration
of the loop by xk.

What is the loop invariant P (k)?

P (k): If the kth iteration of the loop exists then current = 2k and
count = k.

Q: How is this related to the postcondition?

When the loop terminates, x=count and so 2count = 2x = current.

Partial Correctness: Prove P (k) true.

Proof.

Base Case: Before we enter the loop, current = 1 = 20 and
count = 0, therefore P (0) holds.

Inductive Hypothesis Assume that P(i) holds for arbitrary iter-
ation number i, for i ∈ N

Inductive Step

If there is not an (i+1)st iteration then P (i+1) is trivially true.
why??.

Otherwise, there exists an (i+1)st iteration:

currenti+1 = currenti ∗ 2 [by line 5]
= 2i ∗ 2 [by IH]
= 2i+1

counti+1 = counti +1 by line 6
= i+1 by IH

Therefore P (i) holds for all i ∈ N.

19

Showing Termination

Theorem 2.5 (in the notes) Every decreasing sequence of natu-
ral numbers is finite.

Q: How does Theorem 2.5 follow from the Well Ordering Princi-
ple?

think of the values in the sequence as belonging to a set, then
the set has a least element, so the sequence must terminate.

• Consider defining di = x - counti.

• What do we know about di versus di+1:

di forms a decreasing sequence of x, x− 1, x− 2, ...,0.

• How does the exit condition relate to di? exit condition is
that di > 0.

• How do we kow that the loop must terminate? the di form a
decreasing sequence, di ≥ 0, so by Theorem 2.5, di = 0
for some i and the loop must exit.

Q: Given that the loop invariant holds and that the loop termi-
nates, is the post condition met when the exit condition is true?

If the exit condition is true, then x = count. Also by the loop in-
variant, count = k, and currentk = 2k = 2count = 2x. Therefore
the postcondition is met.

To show termination define a decreasing sequence of natural
numbers and use the W.O.P.

20

Multiplication – Take 2
PRECONDITION: m ∈ N, n ∈ Z.
POSTCONDITION: Returns the value m · n.

MULTIPLY(m, n)
1. int x = m;
2. int y = n;
3. int z = 0;
4. while (x '= 0)
5. if (x mod 2 = 1)
6. z = z+y;
7. x = x div 2;
8. y = y · 2;
9. return z;

Q: Why does MULTIPLY(n,m) work?

Consider:

• x · y = y + y + y + · · ·+ y (x times)

• If x is even then x ·y = 2(y+y+y+ · · ·+y) (x/2 times)

• If x is odd then x · y = . . .y + 2(y + y + · · · + y + y)
((x− 1)/2 times) = z + (x− 1)/2 · 2y

• Once x = 0, xy = z +0 · y

Q: Why might we want to use such an algorithm to multiply?

because multiply or divide by 2 is cheap as it is just a shift in
binary.

21

For correctness, we need to prove three things:

1. Partial Correctness

2. Termination

3. Partial Correctness + Termination → Total correctness.

Partial Correctness
Q: Which variables would we expect to partake in the loop invari-
ant?

m, n, x, y, z as they are all involved in the precondition or post-
condition.

Loop Invariant: P (i): “If the ith iteration exists then

mn = zi + xiyi

Q: Why do we believe this loop invariant?

2 reasons: 1 when the loop exists, x = 0 so z = mn. 2. it
makes sense from what we were trying before.

Claim: P (i) is true for all i ∈ N.

Proof.

1. Base Case: i = 0, before the loop begins, z = 0 and
x = m, y = n so x0y0 + z0 = mn

2. Induction Hypothesis: Assume that P (i) is true for arbi-
trary i ∈ N.

22

3 Induction Step: RTP: P (i+1) is true.

Assume that the (i+1)st iteration exists:

• Since P (i) is true: mn = zi + xiyi

• If xi mod 2 '= 1 then:
zi+1 = zi = mn− xiyi

xi+1 = xi/2 yi+1 = 2yi

Therefore, zi+1 = mn− 2xi+1yi+1/2 = mn− xi+1yi+1

• If xi mod 2 = 1 then:

zi+1 = zi + yi = mn− xiyi + yi

xi+1 = (xi − 1)/2 yi+1 = 2yi

Therefore,

zi+1 = mn− (2xi+1 + 1)yi+1/2+ yi+1/2

= mn− xi+1yi+1 − yi+1/2+ yi+1/2

= mn− xi+1yi+1

Therefore, P (i) holds for all i ∈ N.

23

Termination

Q: How can we show that the loop terminates?

define a decreasing sequence so that we can use the WOP.

Q: What is such a sequence?

Notice that xi is decreasing, hence, let di = xi.

Claim: The loop will terminate.

Proof.

Since xi+1 = xidiv2, di+1 = xi+1 < xi = di. Since di is a
decreasing sequence of natural numbers (since each xi ∈ N),
the WOP applies and the sequence must terminate. Notice that
the sequence must terminate at xk = 0 for some k.

24

