Recal

| our recursive multiply algorithm:

PRECONDITION:

POSTCONDITION:

REC MULTIPLY 2 (

if

ret

Xy
) :
(x[0]xy[0])

y) -

(len (x)
return

n/2:n
O:n/2
n/2:n
O:n/2

x []
x []
x []
x []

= RECMULTIPLY 2 (xh, vyh)
REC MULTIPLY 2 (xh+x1,
REC MULTIPLY 2 (x1, vyl)

BINARY ADD (p2, —pl,
SHIFT (p2, n/2)
SHIFT (pl,n)

urn BINARY ADD (pl,p2,p3)

—p3)

yh+yl)

12

Let’s prove that Rec MunTIPLY 2 (x,v) does indeed return the
product of x and y.

Proof by complete induction.

1. Define P(n):

RTP: P(n) istrue forallevenn € Nand n = 1.

2. Base Case:

3. Inductive Hypothesis:

4. Inductive Step:

13

Another Recursive Algorithm—Quicksort

PRECONDITION:

POSTCONDITION:

def QUICKSORT (A) :
if (len(A)==1 or len(A)==0):
return (A)
else:

L, M, U= 1[1, [I, []
for value in A:
if (A[0] < wvalue):

L.append (value)

elif (A[0] == wvalue):

M. append (value)

else:

U.append (value)
final = QUICKSORT (L)
final.append (M)
final.append (QUICKSORT (U))
return(final)

end Quicksort

Q: Which type of induction should we use to prove that Quicksort
is correct?

14

Correctness of Quicksort
Proof. By complete inductionon n = len (3).

1. Define P(n):

2. IH:

3. Case1.n=0o0orn=1

4. Case2.n>2

15

Correctness of Iterative Algorithms

Q: What is an iterative algorithm?

Typical Iterative Algorithm Structure

Precondition: Requirements about the input.
Postcondition: Requirements about the output.

variable declarations
various statements
begin loop

more statements

exlt statement
more statements

end loop
more statements

Q: Which part of the algorithm is the hardest to prove correct?

To prove an algorithm is correct, we need to
e prove that the /ooping portion has a well defined behavior
e and that this behavior ensures that the posiconditionis met.

The well defined behavior is called a loop invariant,

16

Q: How do we express a loop invariant?

Q: How does the postcondition relate to P(n)?

Q: Does this remind you of something else we have seen?

Keys to Proving an lterative Algorithm Correct

We will use a 3-step process.

1. Partial Correctness

2. Proof of Termination

3. Total Correctness

17

A Toy Example

PRECONDITION:
POSTCONDITION:

def POWER(X):

current = 1

count = 0

while (count < x):
current = current=x2
count = count+l

return (current)

Q: What is the exit condition?

Q: What is the invariant? ie., what is true each iteration of the
loop?

Let’s look at a few iterations of the loop to find a pattern:

n P(n)

0 | current = count =
1 | current = count =
2 | current = count =
3 | current = count =
4 | current = count =
I | current = count =

18

Notation:

We will represent the value of a variable = during the k'" iteration
of the loop by z;.

What is the loop invariant P(k)?
P(k):

Q: How is this related to the postcondition?

Partial Correctness: Prove P (k) true.
Proof.

Base Case:
Inductive Hypothesis

Inductive Step
If there is not an (i + 1)% iteration then P(i + 1) is trivially true.

Otherwise, there exists an (7 + 1)* iteration:

current;ii count;iq

Therefore P(7) holds for all 7 € N.
19

Showing Termination

Theorem 2.5 (in the notes) Every decreasing sequence of natu-
ral numbers is finite.

Q: How does Theorem 2.5 follow from the Well Ordering Princi-
ple?

Consider defining d; = « - count;.

e What do we know about d; versus d;1:

e How does the exit condition relate to d;?

e How do we kow that the /loop must terminate?

Q: Given that the loop invariant holds and that the /loop termi-
nates, is the post condition met when the exit condition is true?

[]

To show termination define a decreasing sequence of natural
numbers and use the W.O.P.

20

Multiplication — Take 2

PRECONDITION:
POSTCONDITION:

MULTIPLY(m, n)

1. int x = m;

2. int y = nj;

3. int z = 0;

4 . while (x # 0)

5. if (x mod 2 = 1)
6. z = z+ty;

7. X = x div 2;

8. y =Y - 2;

9.

return z;

Q: Why does MULTIPLY (n, m) work?
Consider:

e v -y=y+y+y+- - +y(ztimes)

e lfriseventhenxz -y =2(y+y+y—+---+y) (x/2times)

e Ifzxisoddthenz -y = ...

e Oncex =0, zy =

Q: Why might we want to use such an algorithm to multiply?

21

For correctness, we need to prove three things:
1.
2.
3.

Partial Correctness

Q: Which variables would we expectto partake in the loop invari-
ant?

Loop Invariant: P(:): “If the i'" iteration exists then

mn = z; + ;Y

Q: Why do we believe this loop invariant?

Claim: P(3) is true for all - € N.

Proof.
1. Base Case:
2. Induction Hypothesis: Assume that P(7) is true for arbi-
trary © € N.

22

3 Induction Step: RTP: P(i + 1) is true.
Assume that the (7 + 1) iteration exists:

e Since P(i) is true:

e Ifx; mod 2 # 1 then:

Ti4+1 = Yi+1 =

Therefore, z;41 =

o Ifz; mod 2 = 1 then:
Zit1 =
Ti4+1 — Yi+1 —

Therefore,

Zi+1 =

Therefore, P(:) holds foralli € N. [

23

Termination

Q: How can we show that the loop terminates?

Q: What is such a sequence?

Claim: The loop will terminate.

Proof.

24

