Binary Multiplication

Q: How do we multiply two numbers?
eg.

83, 810, 205

Consider the following algorithm to multiply two binary numbers.

```
PRECONDITION:
    x and y are binary bit arrays.
POSTCONDITION:
    Returns result a binary bit array equal to
    the product of }x\mathrm{ and }y\mathrm{ .
def Multiply(x, y):
    result = [0];
    for i in range(len(y)-1, -1, -1):
        if y[i] == 1:
            result = BINARY_ADD(result, x)
        x.append(0) #add a 0 to the end of x
    return result
```

Q: If we measure complexity by the number of bit operations, what is the worst case complexity of Multiply?

Q: Is there a more efficient way to implement the multiplication?

Divide and Conquer Multiplication

Notice that

$$
\begin{aligned}
& 010111=010000+111=010 \cdot 2^{n / 2}+111 \\
& 011101=011000+101=011 \cdot 2^{n / 2}+101
\end{aligned}
$$

i.e., we can split a binary number into $n / 2$ high bits and $n / 2$ low bits.

Q: What is 010111×011101 written in terms of high bits and low bits?

Q: What is the complexity of multiplying a number x by $2^{n / 2}$?

In general, $x \times y$ in terms of low bits $\left\{x_{l}, y_{l}\right\}$ and high bits $\left\{x_{h}, y_{h}\right\}$ is:

$$
x \times y=
$$

So we can define a recursive, divide and conquer, multiplication algorithm.

PRECONDITION:

```
    x and y are both binary bit vectors of length n
    (n a power of 2).
POSTCONDITION:
Returns a binary bit vector equal to
the product of }x\mathrm{ and Y.
```

Recmultiply ($x, y):$
if (len (x) == 1):
return ([x[0]*y[0]])
$x h=x[n / 2: n]$
$x l=x[0: n / 2]$
$\mathrm{yh}=\mathrm{x}[\mathrm{n} / 2: \mathrm{n}]$
$y l=x[0: n / 2]$
a $=$ Rechultiply $(x h, y h)$
$\mathrm{b}=\mathrm{Rec}$ Multiply $(\mathrm{xh}, \mathrm{yl})$
c $=$ Rechultiply (xl, yh)
$\mathrm{d}=\operatorname{Rec} \operatorname{Multiply}(x l, y l)$
$\mathrm{b}=\mathrm{BINARY}$ _ADD (b, C)
$\mathrm{a}=\mathrm{SHIFt}(\mathrm{a}, \mathrm{n})$
$\mathrm{b}=\mathrm{SHIFT}(\mathrm{b}, \mathrm{n} / 2)$
return BINARY_ADD ($a, b, d)$
end Recmultiply

Q: What is the recurrence relation for the complexity of REC_MULIIPLY?
$T(n)=$
Q: What is the worst case complexity of Rec_Multiply?

This is a bit disappointing...

A Better Divide and Conquer Multiplication Algorithm

Recall we want to compute:

$$
x_{h} y_{h} \cdot 2^{n}+\left(x_{l} y_{h}+x_{h} y_{l}\right) \cdot 2^{n / 2}+x_{l} y_{l}
$$

Observation [Gauss]

$$
x_{l} y_{h}+x_{h} y_{l}=\left(x_{h}+x_{l}\right)\left(y_{h}+y_{l}\right)-x_{h} y_{h}-x_{l} y_{l}
$$

Q: Why is this true?

$$
\left(x_{h}+x_{l}\right)\left(y_{h}+y_{l}\right)=
$$

Q: How does this help us?
1.
2.
3.

Therefore,

$$
x y=
$$

leading to a new divided and conquer multiplication algorithm:

Recursive Multiply - Take 2

PRECONDITION:

```
    \(x\) and \(y\) are both binary bit arrays of length \(n\),
\(n\) a power of 2 .
Postcondition:
    Returns a binary bit array equal to
    the product of \(x\) and \(y\).
Rec_Multiply_2 ( \(\mathrm{x}, \mathrm{y}\) ):
    if (len (x) == 1):
        return (x[0]*y[0])
    \(\mathrm{xh}=\mathrm{x}[\mathrm{n} / 2: \mathrm{n}]\)
    \(x l=x[0: n / 2]\)
    \(y h=x[n / 2: n]\)
    \(\mathrm{yl}=\mathrm{x}[0: n / 2]\)
        p1 = Rec Multiply 2 (xh, yh)
        p2 = Rec@ultiply_2 (xh+xl, yh+yl)
        p3 = Recmultiply_2(xl, yl)
    \(\mathrm{p} 2=\operatorname{BINARY}\) _ADD \((\mathrm{p} 2,-\mathrm{p} 1,-\mathrm{p} 3)\)
    \(\mathrm{p} 2=\mathrm{SHIFT}(\mathrm{p} 2, \mathrm{n} / 2)\)
    \(\mathrm{p} 1=\operatorname{shift}(\mathrm{p} 1, \mathrm{n})\)
    return binary_add (p1,p2,p3)
```

Q: What is the recurrence relation for Rec_Multiply 2?
$T(n)=$
$T(1)=$
Q: Is this really any better than $T(n)=4 T(n / 2)+\mathcal{O}(n)$?
A: See Assignment 1!

Program Correctness - Chapter 2

Proving program correctness really means proving
If some condition P holds at the start of the execution of a program, then

- the program will terminate
- some condition Q will hold at the end.

Condition P is called a precondition.
Condition Q is called a postcondition.
Think of this as a contract, if the precondition is satisfied then the progam is required to meet the postcondition.

Note: we are not concerned with runtime errors (e.g. overflow, division by zero). They are easier to spot.

Two cases we will consider:

- recursive programs (programs with recursive methods)
- iterative programs (programs with loops)

The Correctness of Recursive Programs

Read the book, pages 47-53.
In this section, we consider how to prove correct programs that contain recursive methods.

We do this by using
simple or complete induction over the arguments to the recursive method.

How to do the proof

To prove a recursive program correct (for a given precondition and a postcondition) we typically

1. prove the recursive method totally correct
2. prove the main program totally correct

A first example

```
public class EXP
{
    int Expo(u,v){
    if v == 0 return 1;
    else if v is even
                return Square(Expo(u,v DIV 2));
        else
            return u*(SQUARE(Expo(u,v DIV 2)));
    }
    int SquARE(x){
        return x*x;
    }
    void main(){
        z = Expo(x,y);
    }
}
    *Note DIV truncates the decimals
```

Note: the main program here does nothing but call the method on x and y

Lemma: For all $m, n \in \mathbb{N}$, the method $\operatorname{Expo}(m, n)$ terminates and returns the value m^{n}.

Proof: next page
Theorem: The program EXP is (totally) correct for precondition $x, y \in \mathbb{N}$ and postcondition $z=x^{y}$.

Proof: immediate from the lemma.

Lemma: For all $m, n \in \mathbb{N}$, the method $\operatorname{Expo}(m, n)$ terminates and returns the value m^{n}.

Proof: We prove by complete induction that $P(n)$ holds for all $n \in \mathbb{N}$, where $P(n)$ is

Assume that $n \in \mathbb{N}$, and that $P(i)$ holds for all $i \in \mathbb{N}, 0 \leq i<n$. So, we have that

To prove $P(n)$, there are three cases to consider:

Case 1: $n=0$.
For any $m, \operatorname{ExpO}(m, 0)$ terminates and returns $1=m^{0}$.
Case 2: $n>0 n$ is odd.

From the code, for any m, when $n>0$ and n is odd,

- Expo (m, n) works by first calling Expo(m, n DIV 2),
- then calling Square on the result,
- and finally multiplying that result by m.
Q.Why is this correct?

Case 2 cont. Since n is odd, So we can apply (*),

The method Square always terminates, and returns

Therefore, $\operatorname{Expo}(m, n)$ terminates and returns

Case 3: $n>0 n$ is even.
similar to previous case
We conclude that the lemma holds for all n and m.

Recall our recursive multiply algorithm:

```
PRECONDITION:
    x and y are both binary bit vectors of length n
(n power of 2).
POSTCONDITION:
Returns a binary bit vector equal to
the product of x and y.
```

Recmultiply $(X, Y):$
if $(\operatorname{len}(x)==1):$
return $([x[0] * y[0]])$

$$
a=\operatorname{REC} M U L T I P L Y(x h, \quad y h)
$$

$$
\mathrm{b}=\operatorname{RECMULTIPLY}(x h, \quad y l)
$$

$$
C=\operatorname{REC} \operatorname{MULTIPLY}(x l, \quad y h)
$$

$$
d=\operatorname{REC} M U L T I P L Y(x l, \quad y l)
$$

```
bo BINARY_ADD(b, C)
a = SHIFT (a,n)
b}=\mathbf{SHIFT(b, n/2)
return BINARY_ADD(a,b,d)
```

$$
\begin{aligned}
& \mathrm{xh}=\mathrm{x}[\mathrm{n} / 2: \mathrm{n}] \\
& x l=x[0: n / 2] \\
& y h=x[n / 2: n] \\
& \mathrm{yl}=\mathrm{x}[0: \mathrm{n} / 2]
\end{aligned}
$$

Let's prove that Recmulifply $2(x, y)$ does indeed return the product of x and y.

Proof by complete induction.

1. Define $P(n)$:

RTP: $P(n)$ is true for all even $n \in \mathbb{N}$ and $n=1$.
2. Base Case:
3. Inductive Hypothesis:
4. Inductive Step:

