
Binary Multiplication

Q: How do we multiply two numbers?

eg.

12,345
× 6,789

111105
987600

8641500
+ 74070000

83,810,205

10111
× 10101

10111
00000

1011100
0000000

+ 101110000

111100011

Pad, multiply and add.

1

Consider the following algorithm to multiply two binary numbers.

PRECONDITION:
x and y are binary bit arrays.

POSTCONDITION:
Returns result a binary bit array equal to
the product of x and y.

def MULTIPLY(x, y):
result = [0];
for i in range(len(y)-1, -1, -1):
if y[i] == 1:
result = BINARY ADD(result, x)

x.append(0) #add a 0 to the end of x
return result

Q: If we measure complexity by the number of bit operations,
what is the worst case complexity of MULTIPLY?

we loop n times, and each loop can require an n-bit addition, for
O(n2).

Q: Is there a more efficient way to implement the multiplication?

yes!

2

Divide and Conquer Multiplication

Notice that

010111 = 010000+ 111 = 010 · 2n/2 +111

011101 = 011000+ 101 = 011 · 2n/2 +101

i.e., we can split a binary number into n/2 high bits and n/2 low
bits.

Q: What is 010111 × 011101 written in terms of high bits and
low bits?

010111× 011101 = 010× 011 · (2n/2)2 +

(010× 101+ 111× 011)(̇2n/2)
+111× 101

Q: What is the complexity of multiplying a number x by 2n/2?

O(n/2), it is simply a “shift”.

In general, x×y in terms of low bits {xl, yl} and high bits {xh, yh}
is:

x× y = xhyh · 2n + (xlyh + xhyl) · 2n/2 + xlyl

So we can define a recursive, divide and conquer, multiplication
algorithm.

3

PRECONDITION:
x and y are both binary bit vectors of length n

(n a power of 2).
POSTCONDITION:
Returns a binary bit vector equal to
the product of x and y.

REC MULTIPLY(x, y):
if (len(x) == 1):

return ([x[0]*y[0]])

xh = x[n/2:n]
xl = x[0:n/2]
yh = x[n/2:n]
yl = x[0:n/2]

a = REC MULTIPLY(xh, yh)
b = REC MULTIPLY(xh, yl)
c = REC MULTIPLY(xl, yh)
d = REC MULTIPLY(xl, yl)

b = BINARY ADD(b,c)
a = SHIFT(a,n)
b = SHIFT(b,n/2)
return BINARY ADD(a,b,d)

end REC MULTIPLY

Q: What is the recurrence relation for the complexity of REC MULTIPLY?

T (n) = 4T (n
2
) +O(n)

Q: What is the worst case complexity of REC MULTIPLY?

O(n2)

This is a bit disappointing...

4

A Better Divide and Conquer Multiplication
Algorithm

Recall we want to compute:

xhyh · 2n + (xlyh + xhyl) · 2n/2 + xlyl

Observation [Gauss]

xlyh + xhyl = (xh + xl)(yh + yl)− xhyh − xlyl

Q: Why is this true?

(xh + xl)(yh + yl) = xlyh + xhyl + xhyh + xlyl

Q: How does this help us?

In order to compute xhyh · 2n + (xlyh + xhyl) · 2n/2 + xlyl we
only need to do 3 multiplies:

1. xhyh

2. xlyl

3. (xh + xl)(yh + yl)

Therefore,

xy = xhyh2
n + [(xh + xl)(yh + yl)− xhyh − xlyl]2

n

2 + xlyl

leading to a new divided and conquer multiplication algorithm:

5

Recursive Multiply – Take 2
PRECONDITION:
x and y are both binary bit arrays of length n,

n a power of 2.
POSTCONDITION:
Returns a binary bit array equal to
the product of x and y.

REC MULTIPLY 2(x, y):
if (len(x) == 1):

return (x[0]*y[0])

xh = x[n/2:n]
xl = x[0:n/2]
yh = x[n/2:n]
yl = x[0:n/2]

p1 = REC MULTIPLY 2(xh, yh)
p2 = REC MULTIPLY 2(xh+xl, yh+yl)
p3 = REC MULTIPLY 2(xl, yl)

p2 = BINARY ADD(p2,-p1, -p3)
p2 = SHIFT(p2, n/2)
p1 = SHIFT(p1,n)
return BINARY ADD(p1,p2,p3)

Q: What is the recurrence relation for REC MULTIPLY 2?

T (n) = 3T (n/2) +O(n)

T (1) = c

Q: Is this really any better than T (n) = 4T (n/2) +O(n)?

A: See Assignment 1!

6

Program Correctness – Chapter 2

Proving program correctness really means proving

If some condition P holds at the start of the execution
of a program, then

• the program will terminate

• some condition Q will hold at the end.

Condition P is called a precondition.

Condition Q is called a postcondition.

Think of this as a contract, if the precondition is satisfied then the
progam is required to meet the postcondition.

Note: we are not concerned with runtime errors (e.g. overflow,
division by zero). They are easier to spot.

Two cases we will consider:

• recursive programs (programs with recursive methods)

• iterative programs (programs with loops)

7

The Correctness of Recursive Programs

Read the book, pages 47–53.

In this section, we consider how to prove correct programs that
contain recursive methods.

We do this by using

simple or complete induction over the arguments to
the recursive method.

How to do the proof

To prove a recursive program correct (for a given precon-
dition and a postcondition) we typically

1. prove the recursive method totally correct

2. prove the main program totally correct

8

A first example

public class EXP
{
int EXPO(u,v){
if v == 0 return 1;
else if v is even

return SQUARE(EXPO(u,v DIV 2));
else

return u*(SQUARE(EXPO(u,v DIV 2)));
}
int SQUARE(x){
return x*x;

}
void main(){
z = EXPO(x,y);

}
} *Note DIV truncates the decimals

Note: the main program here does nothing but call the method
on x and y

Lemma: For all m, n ∈ N, the method EXPO(m, n) terminates
and returns the value mn .

Proof: next page

Theorem: The program EXP is (totally) correct for precondition
x, y ∈ N and postcondition z = xy.

Proof: immediate from the lemma.
9

Lemma: For all m, n ∈ N, the method EXPO(m, n) terminates
and returns the value mn .

Proof: We prove by complete induction that P(n) holds for all
n ∈ N, where P(n) is

for all m ∈ N, EXPO(m,n) terminates and returns mn.

Assume that n ∈ N, and that P(i) holds for all i ∈ N, 0 ≤ i < n.

So, we have that

for all i,m ∈ N, i < n: EXPO(m, i) terminates and returns mi. (*)

To prove P(n), there are three cases to consider:

Case 1: n = 0 .
For any m, EXPO(m,0) terminates and returns 1 = m0 .

Case 2: n > 0 n is odd.

From the code, for any m, when n > 0 and n is odd,

• EXPO(m, n) works by first calling EXPO(m,n DIV 2),

• then calling SQUARE on the result,

• and finally multiplying that result by m.

Q.Why is this correct?

10

Case 2 cont. Since n is odd,

n DIV 2 =
(n− 1)

2
∈ N and

(n− 1)

2
< n.

So we can apply (*), EXPO(m,n DIV 2) terminates and
returns m(n−1)/2.

The method SQUARE always terminates, and returns
(m(n−1)/2)2 = m(n−1).

Therefore, EXPO(m, n) terminates and returns
m ·m(n−1) = mn.

Case 3: n > 0 n is even.

similar to previous case

We conclude that the lemma holds for all n and m.

11

Recall our recursive multiply algorithm:

PRECONDITION:
x and y are both binary bit vectors of length n

(n power of 2).
POSTCONDITION:
Returns a binary bit vector equal to
the product of x and y.

REC MULTIPLY(x, y):
if (len(x) == 1):

return ([x[0]*y[0]])

xh = x[n/2:n]
xl = x[0:n/2]
yh = x[n/2:n]
yl = x[0:n/2]

a = REC MULTIPLY(xh, yh)
b = REC MULTIPLY(xh, yl)
c = REC MULTIPLY(xl, yh)
d = REC MULTIPLY(xl, yl)

b = BINARY ADD(b,c)
a = SHIFT(a,n)
b = SHIFT(b,n/2)
return BINARY ADD(a,b,d)

12

Let’s prove that REC MULTIPLY 2(x,y) does indeed return the
product of x and y.

Proof by complete induction.

1. Define P (n):

Rec Multiply 2(x, y) meets the postcondition, i.e., termi-
nates and returns the product of x and y where x and y are
n bit binary numbers.

RTP: P (n) is true for all even n ∈ N and n = 1.

2. Base Case:

n = 1 Then xy is returned.

3. Inductive Hypothesis:

Assume that for arbitrary n ∈ N, n even, that P (k) is true
for all k < n, k a power of 2.

4. Inductive Step:

By the IH, each call to Rec Multiply 2 correctly returns the
product of the parameters. The is guaranteed since each
parameter is a power of 2 and < n.

by Gauss’ observation, the sum p1 · 2n + (p2 − p1 − p3) ·
2n/2 + p3 = xy. Therefore, Rec Multiply 2 terminates and
returns xy meeting the post-condition.

13

