Predicate Calculus

Review

- A predicate is a boolean function., eg. E(x): x is even. PR(x, y): course x is a prerequisite for course y.
- A *predicate P* of *arity n* maps from the same *domain* of *discourse D*, formally

 $D \times D \times \ldots \times D \rightarrow \{0, 1\}$

- Combine predicates using the connectives from propositional logic: {∧, ∨, ¬, →, ↔}.
- Two quantifiers:
 - 1. UNIVERSAL: (\forall) If $D = \{x_1, x_2, \dots, \}$ then $\forall x, E(x)$ is true if $E(x_1) \land E(x_2) \land \dots$ is true.
 - 2. EXISTENTIAL: (\exists) If $D = \{x_1, x_2, \dots, \}$ then $\exists x, E(x)$ is true if $E(x_1) \lor E(x_2) \lor \dots$ is true.

Example:

Let $D = \mathbb{N}$ and E(x) : x is even.

ls $\forall x, E(x)$ true?

How about $\exists x, E(x)$?

Let

- D ={The set of CS courses at U of T}.
- PR(x, y) : course x is a *prerequisite* for course y.

Q: ls
$$\forall x, \exists y, PR(x, y)$$
 true? $n \circ$
Js every course a prerequisite for
Q: ls $\exists x, \forall y, PR(x, y)$ true? Some course

Q: Do $\exists x, \forall y, PR(x, y)$ and $\forall y, \exists x, PR(x, y)$ mean the same thing? I.e., are they *logically equivalent*?

First-Order Language

We can define the set of *predicate formulas* called a FIRST-ORDER LANGUAGE \mathcal{L} using *structural induction*.

Terminology

- Terms of \mathcal{L} : A term is a constant or variable in \mathcal{L} .
- Atomic formula of \mathcal{L} : An *atomic* formula is a predicate $P(t_1, t_2, \ldots, t_k)$ of *arity* k where each t_i is a *term in* \mathcal{L} .

The set of *First-Order Formulas* of \mathcal{L} is the smallest set such that:

Basis: Any atomic formula in \mathcal{L} is in the set.

Induction Step: If \mathcal{F}_1 and \mathcal{F}_2 are in the *set*, x is a *variable* in \mathcal{L} , then each of $F_1 \vee F_2$, $F_1 \wedge F_2$, $F_1 \to F_2$, $\neg F_1$, $\forall xF_1$, $\exists xF_1$ are in the *set*.

Example: The language of arithmetic, \mathcal{LA} .

- An infinite set of *variables*, $\{x, y, z, u, v, ...\}$
- Constant symbols {0,1}
- Predicates:

$$\circ L(x, y) : x < y,$$

$$\circ S(x, y, z) : x + y = z,$$

$$\circ P(x, y, z) : x \cdot y = z,$$

$$\circ E(x, y) : x = y.$$

Q: Let our *domain* be \mathbb{N} . What does

$$\forall x (\exists y S(y, y, x) \lor \exists y \exists z (S(y, y, z) \land S(z, 1, x)))$$

represent?

Q: Do the two *y*'s on either side of the \lor *represent* the *same* thing?

The Scope of Quantifiers

- A variable is *free* if it is *not* referred to by any *quantifier*.
- A variable is *bound* if it *is* referred to by a *quantifier*.
- A sentence is a formula that has no free variables.

Q: In the following predicate formula, which *variables* are *free* and which are *bound*?

Q: What problem may occur if the *same symbol* is used to represent *more than one variable* in a formula?

Evaluating Predicate Formulas

First suppose that there are *no free variables*.

Determining *satisfiability* or *unsatisfiability* of such a *predicate formula* is a *3-step* process:

1 Give meaning to our predicates. 2 Define the domain. 3 Define which elements of the domain the constants represent.

This defines a *structure* S.

Interpretations and Truth

Examples: Give a *structure* S_1 that *satisfies* the following predicate and another *structure* S_2 that *falsifies* the following *predicate formula*:

- 1. $\forall xL(0,x)$ (a) Let $\zeta(a,b)$ i $a \leq b$. D = M; $O^{S_i} = O$ (b) Let $\zeta(a,b)$: $a \leq b$; $D = \mathbb{Z}$, $O^{S_2} = O$.
- 2. $\forall x \forall y \neg A(x, y, x)$ (a) Pick $D = N^{\infty}$, A : x + y = x(b) Pick D = N, A : x + y = x

If there exists a *free variable* then we need to define a *valuation* of S.

Valuations

 A valuation of S is a function σ that maps each variable in *L* to an *element* of the domain *D*.

e.g., If S is defined as:

- *Domain*: {Simpsons Characters},
- predicate P(x, y): x is a parent of y,
- $-\sigma(x, y, z) = (Homer, Bart, Lisa)$

then P(x, y) expresses Homer is a parent of Bart.

• Given σ ,

 σ_a^x means that σ_a^x is *identical* to σ with the exception that x is mapped to a.

e.g., If S is as above, then $\sigma_{Marge}^x = (Marge, Bart, Lisa)$.

- Together, a structure S and a valuation σ for a language \mathcal{L} , define an *interpretation* denoted $\mathcal{I} = (S, \sigma)$.
- We say \mathcal{I} satisfies a formula F if F is **true** in interpretation \mathcal{I} .
- Similary, \mathcal{I} falsifies F if F is false in interpretation \mathcal{I} .

Logical Equivalences for Predicates

We can define *valid, satisfiable* and *unsatisfiable* in the same manner as with propositional logic.

Let F be a formula of a first order language L. We say F is:

- 1. *valid* or a *tautology* if it is satisfied by *every interpretation* of L
- 2. *satisfiable* if *some interpretation* of *L* satisfies it.
- 3. *unsatisfiable* if it is *not satisfied* by *any interpretation* of *L*

Examples Which of the following is *valid*, *satisfiable* or *unsatisfiable*?

$$A(1)=T B(1)=F$$

• $F : \forall x(A(x) \rightarrow B(x)) \land A(1) \land \neg B(1)$ $\forall N SATTS F / ABLE$ Why?

For some interpretation to satisfy F, what must be true? 1. f(1) = 1

2.
$$B(I) = F$$

3. $A(I) \rightarrow B(I)$ to be true. But it is
Conclusion? $T \rightarrow F$ which is false.
This leads to a contradiction, so no interpretation can satisfy
 F

• F: $\forall x \exists y P(x, y)$

Q: How do we *know* if F is *valid*? perhaps we haven't thought of an *interpretation* that doesn't satisfy F.

Theorem Let *F* and *H* be formulas of a first-order language, then:

- 1. $F \Rightarrow H$ iff $F \rightarrow H$ is valid
- 2. $F \Leftrightarrow H \text{ iff } F \leftrightarrow H \text{ is valid}$

Logical Equivalences – Predicate Logic

For any formulas F and E and variables x and y.

- 1. All the propositional logical equivalences.
- 2. The ∀, ∃ version of *DeMorgan's* called the **Quantifier Dual**ity

 $\neg \forall xF \Leftrightarrow \exists_x \neg F$ and $\neg \exists xF \Leftrightarrow \forall_x \neg F$

3. **Rename Quantified Variables** Why might we want to *rename variables*?

Consider, $\forall x (P(x) \lor \exists x Q(x))$.

$$\stackrel{\Leftrightarrow}{\to} \forall X (P(X) \cup \exists Y Q(Y))$$

4. Substitute Equivalent Formulas:

For example, $((P \land Q) \lor (\neg Q \land \neg P)) \rightarrow R$ is *logically* equivalent to $(P \leftrightarrow Q) \rightarrow R$.

5. Factorizing Quantifiers over \lor and \land : Suppose that x is *not free* in *E*, then what can we say about:

 $(E \land \forall xF) \Leftrightarrow \forall x (E \land F)$ $(E \land \exists xF) \Leftrightarrow \exists x (E \land F)$ $(E \lor \forall xF) \Leftrightarrow \forall x (E \lor F)$ $(E \lor \exists xF) \Leftrightarrow \exists x (E \lor F)$

This equivalence illustrates how we can *factor quantifiers*.

6. **Factorizing Quantifiers over Implications** Assuming *x* is *not free in F*, is

 $\forall x E \to F \stackrel{??}{\Leftrightarrow} \exists x (E \to F)?$

Let's prove

$$\forall x E \to F \stackrel{??}{\Leftrightarrow} \exists x (E \to F)?$$

$$(\forall x E) \rightarrow F \Leftrightarrow \neg (\forall x E) \lor F \\ \Leftrightarrow (\exists x \neg E) \lor F \\ \Leftrightarrow \exists x (\neg E \lor F) \\ \Leftrightarrow \exists x (\neg E \lor F) \\ \Rightarrow \downarrow x (E \rightarrow F)$$

Similar proofs show that:

$$\exists x E \to F \quad \Leftrightarrow \quad \forall x (E \to F) \\ E \to \forall x F \quad \Leftrightarrow \quad \forall x (E \to F) \\ E \to \exists x F \quad \Leftrightarrow \quad \exists x (E \to F)$$

An Example Prove that

$$(\forall x P(x)) \rightarrow \forall x (Q(x) \rightarrow A(x) \lor B(x))$$

is logically equivalent to

$$\exists x \forall y (\neg P(x) \lor \neg Q(y) \lor A(y) \lor B(y)).$$

Proof.

What do we notice about this second formula...

Prenex Normal Form or PNF

A formula is in *Prenex Normal Form (PNF)* if all quantifiers *precede* a *quantifier-free* sub-formula.

Q: Is the following formula *valid*?

 $\forall x \exists y (L(x,y)) \leftrightarrow \exists y \forall x (L(x,y))$

This suggests that formulas in *PNF* are *very sensitive* to the *order* of the *quantifiers*.

Q: Is the following formula valid?

$$\checkmark x \exists y (M(x) \land F(y)) \leftrightarrow \exists y \forall x (M(x) \land F(y))$$

Proof. No. Left as exercise.