
Predicate Calculus

Review

• A predicate is a boolean function., eg. E(x): x is even.
PR(x, y) : course x is a prerequisite for course y.

• A predicate P of arity n maps from the same domain of
discourse D, formally

D ×D × . . .×D → {0,1}

• Combine predicates using the connectives from proposi-
tional logic: {∧,∨,¬,→,↔}.

• Two quantifiers:

1. UNIVERSAL: (∀) If D = {x1, x2, . . . , } then ∀x,E(x)
is true if E(x1) ∧ E(x2) ∧ . . . is true.

2. EXISTENTIAL: (∃) If D = {x1, x2, . . . , } then ∃x,E(x)
is true if E(x1) ∨ E(x2) ∨ . . . is true.

88

Example:

Let D = N and E(x) : x is even.

Is ∀x,E(x) true?

no

How about ∃x,E(x)?

yes

Let

• D ={The set of CS courses at U of T}.

• PR(x, y) : course x is a prerequisite for course y .

Q: Is ∀x, ∃y, PR(x, y) true?

no, not every course is a prerequisite of some course.

Q: Is ∃x, ∀y, PR(x, y) true?

no.

Q: Do ∃x, ∀y, PR(x, y) and ∀y, ∃x, PR(x, y) mean the same
thing? I.e., are they logically equivalent?

no. One says, there is a course that is the prereq for all other
courses. The second says, there is a course that is the prerequi-
site for all courses.

89

First-Order Language

We can define the set of predicate formulas called a FIRST-ORDER
LANGUAGE L using structural induction.

Terminology

• Terms of L: A term is a constant or variable in L.

• Atomic formula of L: An atomic formula is a predicate
P (t1, t2, . . . , tk) of arity k where each ti is a term in L.

The set of First-Order Formulas of L is the smallest set such that:

Basis: Any atomic formula in L is in the set.

Induction Step: If F1 and F2 are in the set, x is a variable in L,
then each of F1 ∨ F2, F1 ∧ F2, F1 → F2, ¬F1, ∀xF1, ∃xF1 are
in the set.

90

Example: The language of arithmetic, LA.

• An infinite set of variables, {x, y, z, u, v, . . .}

• Constant symbols {0,1}

• Predicates:

◦ L(x, y) : x < y,

◦ S(x, y, z) : x+ y = z,

◦ P (x, y, z) : x · y = z,

◦ E(x, y) : x = y.

Q: Let our domain be N. What does

∀x(∃yS(y, y, x) ∨ ∃y∃z(S(y, y, z) ∧ S(z,1, x)))

represent?

Every natural number is either odd or even.

Q: Do the two y’s on either side of the ∨ represent the same
thing?

no

91

The Scope of Quantifiers

• A variable is free if it is not referred to by any quantifier.

• A variable is bound if it is referred to by a quantifier.

• A sentence is a formula that has no free variables.

Q: In the following predicate formula, which variables are free
and which are bound?

∀x[∃y(R(x, y) ∧ T (z, x)) → ∀z(N(z, x, y))]

free bound

free: z1, y2 bound:x, y1, z2

Q: What problem may occur if the same symbol is used to rep-
resent more than one variable in a formula? ambigous when
proving/writing equivalences

Q: Soln?

do a variable substitution, i.e., above, replace the second y with
an ”a” and the second ”z” with a ”b”.

92

Evaluating Predicate Formulas
First suppose that there are no free variables.

Determining satisfiability or unsatisfiability of such a predicate
formula is a 3-step process:

1. define the meaning a predicate symbol represents,

2. define the domain that the variables can take values from ,

3. define which elements of the domain the constants repre-
sent and

This defines a structure S.

Interpretations and Truth
Examples: Give a structure S1 that satisfies the following predi-
cate and another structure S2 that falsifies the following predicate
formula:

1. ∀xL(0, x)

(a) Define S1 to be: DS1 = N, 0 = 0S1, L(y, z) : y is less
than or equal to z.

(b) Define S2 to be: DS2 = Z, 0 = 0S, L(y, z) : y is less
than or equal to z.

2. ∀x∀y¬A(x, y, x)

(a) Define S2 to be: DS2 = N, A(x, y, z) : x+ y = z

(b) Define S1 to be: DS1 = N, A(x, y, z) : x+ y = z

If there exists a free variable then we need to define a valuation
of S.

93

Valuations

• A valuation of S is a function σ that maps each variable in
L to an element of the domain D.

e.g., If S is defined as:

– Domain: {Simpsons Characters},

– predicate P (x, y) : x is a parent of y,

– σ(x, y, z) = (Homer,Bart, Lisa)

then P (x, y) expresses Homer is a parent of Bart..

• Given σ,

σx
a means that σx

a is identical to σ with the exception that
x is mapped to a.

e.g., If S is as above, then σx
Marge = (Marge,Bart, Lisa).

• Together, a structure S and a valuation σ for a language L,
define an interpretation denoted I = (S,σ).

• We say I satisfies a formula F if F is true in interpretation
I.

• Similary, I falsifies F if F is false in interpretation I.

94

Logical Equivalences for Predicates
We can define valid, satisfiable and unsatisfiable in the same
manner as with propositional logic.

Let F be a formula of a first order language L. We say F is:

1. valid or a tautology if it is satisfied by every interpretation
of L

2. satisfiable if some interpretation of L satisfies it.

3. unsatisfiable if it is not satisfied by any interpretation of L

Examples Which of the following is valid, satisfiable or unsatisfi-
able?

• ∀xA(x) → A(1)

VALID

Why?
If an interpretation makes ∀xA(x) false, then we get F →
F which is true. If an interpretation with structure S and
valuation σ makes ∀xA(x) true? then certainly A(1) is
also true.

• ∃xA(x) → A(1)

SATISFIABLE.

Why?
Let D = {1} then if A(1) is true, then ∃xA(x) → A(1).
If D = {1,2} and A(2) = true, A(1) = false then
∃xA(x) → A(1) is false.

95

• F : ∀x(A(x) → B(x)) ∧A(1) ∧ ¬B(1)

UNSATISFIABLE

Why?

For some interpretation to satisfy F , what must be true?

1. ∀x(A(x) → B(x)) must be satisfied. Happens when
every element belonging to AS also belongs to BS, ie.,
AS ⊂ BS

2. A(1) must be satisfied. Happens when cS ∈ AS.

3. B(1) must be satisfied. Happens when cS +∈ BS.

Conclusion?

This leads to a contradiction, so no interpretation can satisfy
F

• F: ∀x∃yP (x, y)

SATISFIABLE. let P (x, y) be x ≥ y and D = natural numbers?
then F is true, let y = 0. If P (x, y) is x < y and D = N then F
is false.

Q: How do we know if F is valid? perhaps we haven’t thought of
an interpretation that doesn’t satisfy F .

use known logical equivalences.

96

Theorem Let F and H be formulas of a first-order language,
then:

1. F ⇒ H iff F → H is valid

2. F ⇔ H iff F ↔ H is valid

Logical Equivalences – Predicate Logic

For any formulas F and E and variables x and y.

1. All the propositional logical equivalences.

2. The ∀, ∃ version of DeMorgan’s called the Quantifier Dual-
ity

¬∀xF ⇔ ∃x¬F and ¬∃xF ⇔ ∀x¬F

3. Rename Quantified Variables Why might we want to re-
name variables?

To avoid ambiquity.

Consider, ∀x(P (x) ∨ ∃xQ(x)).

⇔ ∀x(P (x) ∨ ∃yQ(y))

97

4. Substitute Equivalent Formulas:

For example, ((P ∧ Q) ∨ (¬Q ∧ ¬P)) → R is logically
equivalent to (P ↔ Q) → R.

5. Factorizing Quantifiers over ∨ and ∧: Suppose that x is
not free in E, then what can we say about:

(E ∧ ∀xF) ⇔

(E ∧ ∃xF) ⇔

(E ∨ ∀xF) ⇔

(E ∨ ∃xF) ⇔

⇔ Qx(E ∧F) where Q is either quantifier and ⇔ Qx(E ∨
F).

This equivalence illustrates how we can factor quantifiers.

6. Factorizing Quantifiers over Implications

Assuming x is not free in F , is

∀xE → F
??⇔ ∃x(E → F)?

Yes.

Let’s prove

∀xE → F
??⇔ ∃x(E → F)?

∀xE → F ⇔ ¬∀xE ∨ F

⇔ ∃x¬E ∨ F

⇔ ∃x(¬E ∨ F)
⇔ ∃x(E → F)

Similar proofs show that:

∃xE → F ⇔ ∀x(E → F)
E → ∀xF ⇔ ∀x(E → F)
E → ∃xF ⇔ ∃x(E → F)

98

An Example Prove that

(∀xP (x)) → ∀x(Q(x) → A(x) ∨B(x))

is logically equivalent to

∃x∀y(¬P (x) ∨ ¬Q(y) ∨A(y) ∨B(y)).

Proof.

(∀xP (x)) → ∀x(Q(x) → A(x) ∨B(x))

⇔ (∀xP (x)) → ∀y(Q(y) → A(y) ∨B(y)) (renaming quantified vars)

⇔ ¬(∀xP (x)) ∨ ∀y(¬Q(y) ∨A(y) ∨B(y)) (arrow law)

⇔ ∃x(¬P (x)) ∨ ∀y(¬Q(y) ∨A(y) ∨B(y)) (duality law)

⇔ ∃x∀y(¬P (x) ∨ ¬Q(y) ∨A(y) ∨B(y)) (factoring quantifiers)

What do we notice about this second formula...

The quantifiers are all at the front

99

Prenex Normal Form or PNF
A formula is in Prenex Normal Form (PNF) if all quantifiers pre-
cede a quantifier-free sub-formula.

Q: Is the following formula valid?

∀x∃y(L(x, y)) ↔ ∃y∀x(L(x, y))

no. Consider L(x, y) : x < y and D = N, then lhs is true and
rhs is false

This suggests that formulas in PNF are very sensitive to the order
of the quantifiers.

Q: Is the following formula valid?

∀x∃y(M(x) ∧ F (y)) ↔ ∃y∀x(M(x) ∧ F (y))

yes.

Proof.

Notice that:

∀x∃y(M(x) ∧ F (y)) ⇔ ∀x(M(x) ∧ ∃yF (y))
⇔ ∀M(x) ∧ ∃yF (y)
⇔ ∃yF (y) ∧ ∀xM(x)
⇔ ∃y(F (y) ∧ ∀xM(x))
⇔ ∃y∀x(F (y) ∧M(x)) ⇔ ∃y∀x(M(x) ∧ F (y))

100

