Predicate Calculus

Review

- A *predicate* is a *boolean function*., eg. E(x): x is even. PR(x,y): course x is a prerequisite for course y.
- A predicate P of arity n maps from the same domain of discourse D, formally

$$D \times D \times \ldots \times D \rightarrow \{0,1\}$$

- Combine *predicates* using the *connectives* from *propositional logic*: $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$.
- Two quantifiers:
 - 1. UNIVERSAL: (\forall) If $D = \{x_1, x_2, ..., \}$ then $\forall x, E(x)$ is true if $E(x_1) \land E(x_2) \land ...$ is true.
 - 2. EXISTENTIAL: (\exists) If $D = \{x_1, x_2, ..., \}$ then $\exists x, E(x)$ is true if $E(x_1) \lor E(x_2) \lor ...$ is true.

Example:

Let $D = \mathbb{N}$ and E(x) : x is even.

Is $\forall x, E(x)$ true?

How about $\exists x, E(x)$?

Let

- $D = \{ \text{The set of CS courses at U of T} \}.$
- PR(x,y): course x is a *prerequisite* for course y.

Q: Is $\forall x, \exists y, PR(x, y)$ true?

Q: Is $\exists x, \forall y, PR(x, y)$ true?

Q: Do $\exists x, \forall y, PR(x, y)$ and $\forall y, \exists x, PR(x, y)$ mean the same thing? I.e., are they *logically equivalent*?

First-Order Language

We can define the set of *predicate formulas* called a FIRST-ORDER LANGUAGE \mathcal{L} using *structural induction*.

Terminology

- **Terms of** \mathcal{L} : A *term* is a *constant* or *variable* in \mathcal{L} .
- Atomic formula of \mathcal{L} : An *atomic* formula is a predicate $P(t_1, t_2, ..., t_k)$ of *arity* k where each t_i is a *term in* \mathcal{L} .

The set of *First-Order Formulas* of \mathcal{L} is the smallest set such that:

Basis: Any atomic formula in \mathcal{L} is in the set.

Induction Step: If \mathcal{F}_1 and \mathcal{F}_2 are in the *set*, x is a *variable* in \mathcal{L} , then each of $F_1 \vee F_2$, $F_1 \wedge F_2$, $F_1 \to F_2$, $\neg F_1$, $\forall x F_1$, $\exists x F_1$ are in the *set*.

Example: The *language of arithmetic,* \mathcal{LA} .

- An infinite set of *variables*, $\{x, y, z, u, v, \ldots\}$
- *Constant* symbols {0, 1}
- Predicates:
 - $\circ L(x,y)$: x < y,
 - $\circ S(x, y, z) : x + y = z,$
 - $\circ P(x, y, z) : x \cdot y = z,$
 - $\circ E(x,y)$: x=y.

Q: Let our *domain* be \mathbb{N} . What does

$$\forall x (\exists y S(y, y, x) \lor \exists y \exists z (S(y, y, z) \land S(z, 1, x)))$$

represent?

Q: Do the two y's on either side of the \vee *represent* the *same* thing?

The Scope of Quantifiers

- A variable is *free* if it is *not* referred to by any *quantifier*.
- A variable is *bound* if it *is* referred to by a *quantifier*.
- A sentence is a formula that has no free variables.

Q: In the following predicate formula, which *variables* are *free* and which are *bound*?

$$\forall x[\exists y(R(x,y) \land T(z,x)) \rightarrow \forall z(N(z,x,y))]$$

free bound

Q: What problem may occur if the *same symbol* is used to represent *more than one variable* in a formula?

Q: Soln?

Evaluating Predicate Formulas

First suppose that there are *no free variables*.

Determining *satisfiability* or *unsatisfiability* of such a *predicate formula* is a *3-step* process:

- 1.
- 2.
- 3.

This defines a *structure* S.

Interpretations and Truth

Examples: Give a *structure* S_1 that *satisfies* the following predicate and another *structure* S_2 that *falsifies* the following *predicate formula*:

- 1. $\forall x L(0,x)$
 - (a)
 - (b)
- 2. $\forall x \forall y \neg A(x, y, x)$
 - (a)
 - (b)

If there exists a *free variable* then we need to define a *valuation* of S.

Valuations

• A *valuation* of S is a *function* σ that *maps* each variable in \mathcal{L} to an *element* of the domain \mathcal{D} .

e.g., If S is defined as:

- Domain: {Simpsons Characters},
- predicate P(x,y): x is a parent of y,
- $-\sigma(x,y,z) = (Homer, Bart, Lisa)$

then P(x, y) expresses Homer is a parent of Bart.

• Given σ ,

 σ_a^x means that σ_a^x is *identical* to σ with the exception that x is mapped to a.

e.g., If S is as above, then $\sigma^x_{Marge} = (Marge, Bart, Lisa)$.

- Together, a structure S and a valuation σ for a language \mathcal{L} , define an interpretation denoted $\mathcal{I} = (S, \sigma)$.
- We say \mathcal{I} satisfies a formula F if F is **true** in interpretation \mathcal{I} .
- Similary, \mathcal{I} falsifies F if F is **false** in interpretation \mathcal{I} .

Logical Equivalences for Predicates

We can define *valid*, *satisfiable* and *unsatisfiable* in the same manner as with propositional logic.

Let F be a formula of a first order language L. We say F is:

- 1. valid or a $\mathit{tautology}$ if it is satisfied by every $\mathit{interpretation}$ of L
- 2. satisfiable if some interpretation of L satisfies it.
- 3. unsatisfiable if it is not satisfied by any interpretation of L

Examples Which of the following is *valid*, *satisfiable* or *unsatisfiable*?

• $\forall x A(x) \rightarrow A(1)$

Why?

• $\exists x A(x) \rightarrow A(1)$

Why?

• $F: \forall x(A(x) \to B(x)) \land A(1) \land \neg B(1)$

Why?

For some interpretation to satisfy F, what must be true?

1.

2.

3.

Conclusion?

This leads to a contradiction, so no interpretation can satisfy ${\cal F}$

• $F: \forall x \exists y P(x,y)$

Q: How do we *know* if F is *valid*? perhaps we haven't thought of an *interpretation* that doesn't satisfy F.

Theorem Let F and H be formulas of a first-order language, then:

- 1. $F \Rightarrow H \text{ iff } F \rightarrow H \text{ is valid}$
- 2. $F \Leftrightarrow H \text{ iff } F \leftrightarrow H \text{ is valid}$

Logical Equivalences – Predicate Logic

For any formulas F and E and variables x and y.

- 1. All the propositional logical equivalences.
- 2. The \forall , \exists version of *DeMorgan's* called the **Quantifier Duality**

$$\neg \forall x F \Leftrightarrow$$
 and $\neg \exists x F \Leftrightarrow$

3. **Rename Quantified Variables** Why might we want to *rename variables*?

Consider,
$$\forall x (P(x) \lor \exists x Q(x)).$$
 \Leftrightarrow

4. Substitute Equivalent Formulas:

For example, $((P \land Q) \lor (\neg Q \land \neg P)) \rightarrow R$ is *logically equivalent* to $(P \leftrightarrow Q) \rightarrow R$.

5. Factorizing Quantifiers over \vee and \wedge : Suppose that x is not free in E, then what can we say about:

$$(E \wedge \forall xF) \Leftrightarrow$$

$$(E \wedge \exists xF) \Leftrightarrow$$

$$(E \vee \forall xF) \Leftrightarrow$$

$$(E \vee \exists xF) \Leftrightarrow$$

This equivalence illustrates how we can factor quantifiers.

6. Factorizing Quantifiers over Implications

Assuming x is not free in F, is

$$\forall xE \to F \stackrel{??}{\Leftrightarrow} \exists x(E \to F)$$
?

Let's prove

$$\forall xE \to F \stackrel{??}{\Leftrightarrow} \exists x(E \to F)$$
?

$$\forall xE \to F \quad \Leftrightarrow \\ \Leftrightarrow \\ \Leftrightarrow \\ \Leftrightarrow \\$$

Similar proofs show that:

$$\exists xE \to F \iff \forall x(E \to F)$$

$$E \to \forall xF \iff \forall x(E \to F)$$

$$E \to \exists xF \iff \exists x(E \to F)$$

An Example Prove that

$$(\forall x P(x)) \rightarrow \forall x (Q(x) \rightarrow A(x) \lor B(x))$$

is logically equivalent to

$$\exists x \forall y (\neg P(x) \vee \neg Q(y) \vee A(y) \vee B(y)).$$

Proof.

$$(\forall x P(x)) \to \forall x (Q(x) \to A(x) \lor B(x))$$

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

What do we notice about this second formula...

Prenex Normal Form or PNF

A formula is in *Prenex Normal Form (PNF)* if all quantifiers *precede* a *quantifier-free* sub-formula.

Q: Is the following formula *valid*?

$$\forall x \exists y (L(x,y)) \leftrightarrow \exists y \forall x (L(x,y))$$

This suggests that formulas in *PNF* are *very sensitive* to the *order* of the *quantifiers*.

Q: Is the following formula *valid*?

$$\forall x \exists y (M(x) \land F(y)) \leftrightarrow \exists y \forall x (M(x) \land F(y))$$

Proof.