Formal Languages

We'll use the *English* language as a running example.

Definitions.

Examples.

- A *string* is a *finite set* of *symbols*, where each *symbol* belongs to an *alphabet* denoted by Σ .
- The set of all strings that can be constructed from an alphabet Σ is Σ*.
- If *x*, *y* are two strings of *lengths* |*x*| and |*y*|, then:
 - xy or $x \circ y$ is the *concatenation* of x and y, so the length, |xy| = |x| + |y|
 - $(x)^R$ is the *reversal* of x
 - the k^{th} -power of x is

$$x^{k} = \begin{cases} \epsilon & \text{if } k = 0\\ x^{k-1} \circ x, & \text{if } k > 0 \end{cases}$$

- equal, substring, prefix, suffix are defined in the expected ways.
- Note that the language \emptyset is *not* the same language as ϵ .

Operations on Languages

Suppose that L_E is the *English* language and that L_F is the *French* language over an alphabet Σ .

- Complementation: $\overline{L} = \Sigma^* L$ \overline{L}_E is the set of all words
- Union: $L_1 \cup L_2 = \{x : x \in L_1 \text{ or } x \in L_2\}$

 $L_E \cup L_F$ is the set

• Intersection: $L_1 \cap L_2 = \{x : x \in L_1 \text{ and } x \in L_2 \}$

 $L_E \cap L_F$ is the set

Concatenation: L₁ ◦ L₂ is the set of all strings xy such that x ∈ L₁ and y ∈ L₂

Q: What is an example of a string in $L_E \circ L_F$?

Q: What if L_E or L_F is \emptyset ? What is $L_E \circ L_F$?

• Kleene star: L*. Also called the Kleene Closure of L and is the concatenation of zero or more strings in L.

Recursive Definition

- Base Case: $\epsilon \in L$
- Induction Step: If $x \in L^*$ and $y \in L$ then $xy \in L^*$
- Language Exponentiation Repeated *concatenation* of a language *L*.

$$L^{k} = \begin{cases} \{\epsilon\} & \text{if } k = 0\\ L^{k-1} \circ L, & \text{if } k > 0 \end{cases}$$

• **Reversal** The language *Rev(L)* is the language that results from *reversing all strings in L*.

Q: How do we *define* the strings that belong to a *language* such as *English, French, Java, arithmetic,* etc.

Example: For the *language of arithmetic*, \mathcal{LA} :

Define $\Sigma = \{\mathbb{N}\} \cup \{+, -, =, (,)\}$ then

")((2(+4(="
$$\in \Sigma^*)$$

but

$$")((2(+4)=" \notin \mathcal{LA}))$$

Regular Expressions

A regular expression over an alphabet Σ consists of

- 1. Symbols in the alphabet
- 2. The symbols {+, (,),* } where + means OR and * means *zero* or *more times*.

Recursive Definition.

Let the set \mathcal{RE} of *ALL regular expressions*, be the smallest set such that:

- **Basis**: $\emptyset, \epsilon, a \in RE, \forall a \in \Sigma$
- Inductive Step: if *R* and *S* are regular expressions ∈ *RE*, then so are: (*R*+*S*), (*RS*), *R**

Examples: Let $\Sigma = \{0, 1\}$:

Regular Expression	Corresponding Language
$(0+1)^*$	
$((0+1)(0+1)^*)$	
$((0+1)(0+1))^*$	
$\epsilon + 0 + 0(0 + 1)*0$	
$11(0+11)^*$	

Relating Regular Expressions to Languages

Let $\mathcal{L}(\mathcal{R})$ represent the *language* constructed by the *regular expression* R.

We define $\mathcal{L}(\mathcal{R})$ *inductively* as follows:

Base Case:

- $\mathcal{L}(\emptyset) = \emptyset$
- $\mathcal{L}(\epsilon) = \{\epsilon\}$
- For any $a \in \Sigma$, $\mathcal{L}(a) = \{a\}$

Induction Step: If R is a *regular expression*, then by definition of R,

- R = ST, or
- R = S + T, or
- $R = S^*$

where *S* and *T* are *regular expressions* and by *induction*, $\mathcal{L}(S)$ and $\mathcal{L}(T)$ have been defined.

We can define the language denoted by R, ie., $\mathcal{L}(\mathcal{R})$ as follows:

- $\mathcal{L}((\mathcal{S} + \mathcal{T})) =$
- $\mathcal{L}((\mathcal{ST})) =$
- $\mathcal{L}(\mathcal{S}^*) =$

Q: Why is this definition important?

Example

Q: What is a *regular expression* R_A to denote the language of strings consisting of only an *even number* of *a*'s?

e.g., aa, aaaa, aaaaaaaa etc.

Q: What is a regular expression, \mathcal{R}_{AB} , for the language of strings consisting of an *even number* of *a*'s *sandwiched* between 1 or more *triples* of *b*?

eg., bbbaabbb, or bbbaaaaaabbb

Equivalence. We say that two regular expressions R and S are *equivalent* if they *describe* the *same language*.

In other words, if $\mathcal{L}(\mathcal{R}) = \mathcal{L}(\mathcal{S})$ for two regular expressions R and S then R = S.

Examples.

• Are *R* and *S* equivalent?

$$R = a^{*}(ba^{*}ba^{*})^{*}$$
 and $S = a^{*}(ba^{*}b)^{*}a^{*}$

Q: Why?

• Are $R = (a(a + b)^*)$ and $S = (a(a + b))^*$ equivalent?

Regular Expression Equivalences

There exist *equivalence axioms* for *regular expressions* that are very similar to those for *predicate/propositional logic*.

Equivalences for Regular Expressions

- Commutativity of union:
- Associativity of union:
- Associativity of concatenation:
- Left distributivity:
- Right distributivity:
- Identity of Union:
- Identity of Concatenation:
- Annihilator for concatenation:
- Idempotence of Kleene star:

Theorem (Substitution) If two substrings R and R' are equivalent then if R is a substring of S then replacing R by R' constructs a new regular expression equivalent to S.

Equivalent Regular Expressions

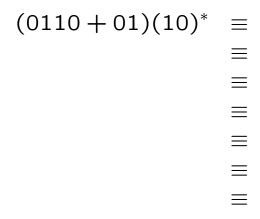
Q: How can we determine whether two *regular expressions* denote the *same language*?

Examples.

Prove that

$$(0110 + 01)(10)^* \equiv 01(10)^*$$

Proof.



Another Example.

Prove that *R* denotes the *language L* of all strings that contain an *even number* of 0 s.

$$R = 1^* (01^* 01^*)^*$$

Equivalently,

$$x \in L \Leftrightarrow x \in \mathcal{L}(R)$$

Proof.

 (\Rightarrow)

- Let $x \in \mathcal{L}(R)$.
- Then $x \in$
- Let $x = y(zw)^*$ then
- Therefore, y has
- Therefore, w has
- Therefore, z has
- So, $x = y(zw)^*$ has

(⇐)

- Suppose that *x* is an *arbitrary* string in *L*.
- $\Rightarrow x$ has an *even* number of 0s. Denote by 2k for some $k \in \mathbb{N}$.
- How can we rewrite x consisting of 0 s and 1s?
- Let $x = y_0, y_1, y_2, \dots, y_k$, so
- So $x = y_0 y_1 \dots y_k \in \mathcal{L}(1^*)(\mathcal{L}(01^*01^*))^* = \mathcal{L}(1(01^*01^*)^*).$

Q: Can *every* possible type of string be *represented* by a *regular expression*?

To answer this, we turn to *Finite State Machines*.

String Matching and Finite State Machines

- Given *source code* (say in Java)
- Find the comments may need to remove comments for software transformations

```
public class QuickSort {
   private static long comparisons = 0;
   private static long exchanges
                             = 0;
  * Quicksort code from Sedgewick 7.1, 7.2.
   public static void quicksort(double[] a) {
       shuffle(a);
                                     // to guard against worst-case
       quicksort(a, 0, a.length - 1);
   }
   public static void quicksort(double[] a, int left, int right) {
      if (right <= left) return;</pre>
       int i = partition(a, left, right);
       quicksort(a, left, i-1);
       quicksort(a, i+1, right);
   }
   private static int partition(double[] a, int left, int right) {
      int i = left - 1;
      int j = right;
      while (true) {
          while (less(a[++i], a[right])) // find item on left to swap
                                         // a[right] acts as sentinel
          while (less(a[right], a[--j]))
                                        // find item on right to swap
             if (j == left) break;
                                         // don't go out-of-bounds
          if (i >= j) break;
                                         // check if pointers cross
          exch(a, i, j);
                                         // swap two elements into place
      }
                                         // swap with partition element
      exch(a, i, right);
      return i;
   }
```

- Q. What *patterns* are we looking for?
- Q. What do we know if we see a / followed by a
 - *
 /

text

Q. What do we know if we see $^{/\ast}$ followed by a

*

text

Let's represent these ideas with a *diagram*.

Deterministic Finite State Automata (DFSA or DFA)

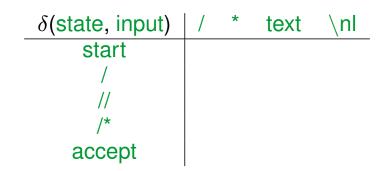
A DFA consists of:

- Q.
- *∑*.
- $s \in Q$.
- $F \subseteq Q$.
- δ.

Comment Example.

- Q =
- $\Sigma =$
- *s* =
- F =
- δ

Example cont...



Q: What if we want to know which state the input "**//" ends at if we *begin* at *start*?

Two Options.

- 1. Compute:
- 2. Define δ^* .

Formal definition of $\delta^*(q, x)$ (reading left to right):

$$\delta^*(q,x) = \begin{cases} q & \text{if } x = \epsilon \\ \delta(\delta^*(q,z),a) & \text{if } x = za, a \in \Sigma, z \in \Sigma^* \end{cases}$$

Regular Expressions and DFA

- The set of strings *accepted* by an *automaton* defines a *lan-gauge*.
- For automaton M the language M accepts is $\mathcal{L}(M)$.
- Given regular expression R, find M such that

$$\mathcal{L}(R) = \mathcal{L}(M).$$

Examples.

Let regular expression $R_1 = (1 + 00)^*$.

Q. Which strings belong to $\mathcal{L}(R_1)$?

Q: What is a *DFA* M_1 such that $\mathcal{L}(M_1) = \mathcal{L}(R_1)$?

DFSA Conventions

- Strings ending at a *final state* are *accepted* (if we want to accept/reject).
- Drop *dead* states.
- Group *elements* that go from and to the *same states*.

Examples cont.

Let regular expression $R_2 = 1(1 + (01))^*$.

Q. Which strings belong to $\mathcal{L}(R_2)$?

Q: What is a *DFA* M_2 such that $\mathcal{L}(M_2) = \mathcal{L}(R_2)$?

$$\delta: \quad \delta(q_0, 0) = \quad \delta(q_0, 1) = \quad \delta(q_1, 0) =$$
$$\delta(q_1, 1) = \quad \delta(q_2, 0) = \quad \delta(q_2, 1) =$$
$$\delta(d_1, 0 \text{ or } 1) =$$

Q: How do we know that our *machine M* is *correct*?

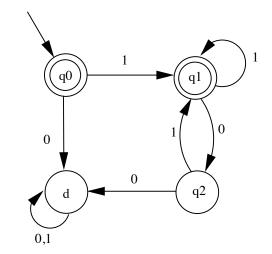
We can show this by proving that $\delta^*(q_0, x)$ only accepts those strings in $\mathcal{L}(R_2)$.

Q: What might be a good way to do this?

Proving a DFA is Correct

Q: What should we do *induction* on?

Q: What should our S(x) include?



Proof that $\mathcal{L}(M_2) = \mathcal{L}(R_2)$:

 $\mathcal{L}(R_2) = \{x \in \{0, 1\} \mid \text{ every 0 is sandwiched between 1s } \}$

$$S(x): \quad \delta^*(q_0, x) = \begin{cases} q_0 \\ q_1 \\ q_2 \\ d_1 \end{cases}$$

RTP S(x) for all $x \in \Sigma^*$.

Base Case. $x = \epsilon$:

IS. Assume that S(y) holds for $y \in \Sigma^*$ and consider x = ya where $a \in \Sigma$.

Two cases: Case 1. a = 1. and Case 2: a = 0.

Case 1. a = 1. Then $\delta^*(q_0, y_1) =$ of δ^* .

$$\delta^*(q_0, y\mathbf{1}) = \begin{cases} \delta(q_0, \mathbf{1}) & \text{if} \\ \delta(q_1, \mathbf{1}) & \text{if} \\ \delta(q_2, \mathbf{1}) & \text{if} \\ \delta(d_1, \mathbf{1}) & \text{if} \end{cases}$$

Q. Why can we write this?

We can rewrite in terms of x to get:

$$\delta^*(q_0, y_1) = \begin{cases} \delta(q_0, 1) \\ \delta(q_1, 1) \\ \delta(q_2, 1) \\ \delta(d_1, 1) \end{cases}$$

from the *definition* of δ (or the diagram):

$$\delta^*(q_0, y\mathbf{1}) = \begin{cases} \\ \end{cases}$$

by definition

Case 2: a = 0 Then $\delta^*(q_0, y_0) =$ by definition of δ^* .

$$= \begin{cases} \delta(q_0, 0) & \text{if } y \text{ is empty, } y \in \mathcal{L}(R_2) \\ \delta(q_1, 0) & \text{if all } 0 \text{s in } y \text{ sandwiched by } 1 \text{s} \\ \delta(q_2, 0) & \text{if } y \text{ ends in } 0 \\ \delta(d_1, 0) & \text{if } y \text{ has a } 0 \text{ not preceded by a } 1 \end{cases}$$

because x ends with a 0,

$$= \begin{cases} \delta(q_0, 0) & \text{if } x \text{ has a } 0 \text{ that is not preceded by a } 1, x \notin \mathcal{L}(R_2) \\ \delta(q_1, 0) & \text{if } x \text{ ends in a } 0, \text{ so } x \notin \mathcal{L}(R_2) \\ \delta(q_2, 0) & \text{if } x \text{ ends in } 00, \text{ so } x \notin \mathcal{L}(R_2) \\ \delta(d_1, 0) & \text{if } x \text{ has a } 0 \text{ not preceded by a } 1, \text{ so } x \notin \mathcal{L}(R_2) \end{cases}$$

from the state diagram and definition of $\boldsymbol{\delta}$

$$= \begin{cases} d_1 & \text{if } x \text{ has a 0 that is not preceded by a 1, } x \notin \mathcal{L}(R_2) \\ q_2 & \text{if } x \text{ ends in a 0 but all other 0s sandwiched by 1s} \\ d_1 & \text{if } x \text{ has a 0 not preceded by a 1, } x \notin \mathcal{L}(R_2) \\ d_1 & \text{if } x \text{ has a 0 not preceded by a 1, } x \notin \mathcal{L}(R_2) \end{cases}$$

Therefore, our *DFA* satisfies the *invariant* S(x).

Non-Deterministic Finite State Automata (NFA or NFSA)

Q: What does *deterministic* mean?

NFSA. A *non-deterministic finite state automata* (*NFSA*) extends *DFSA* by *allowing* choice at each state.

Differences between DFSA and NFSA:

• **NFSA.** Given a state q_i and an input x there can be *more* than *one* possible *transition*, i.e,

$$\delta^*(q, x) = \{set \ of \ q_i\}$$

• **NFSA.** Given state q_i , we can have an ϵ *transition*.

$$\delta^*(q_i,\epsilon) = q_j$$

This means we can spontaneously *jump* from q_i to q_j .

Q: How do we know if a *string* is *accepted* by an *NFSA*?

Examples of NFSA

Consider the strings that are *represented* by the *regular expression*: $(010 + 01)^*$

NFSA:

DFSA:

Formally. An *NFSA*, is a machine $M = (Q, \Sigma, \delta, s, F)$ where

- each of Q, Σ, s, F are as for a *DFSA*.
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q) \ (\mathcal{P}(Q) \text{ is a set of states}).$
- $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q).$

Limitations of DFSA and NFSA

Q: Can *every* set of strings be *recognized* by a *DFSA*? an *NFSA*?

Q: How much more *powerful* is an *NFSA* over a *DFSA*?

Detailed answers.

- Only strings representable by *regular expressions* can be *recognized* by an *NFSA* or *DFSA*.
- There exists an *algorithm* to *convert* between *deterministic* and *non-deterministic* machines.

Theorem. If *L* is a regular language then the following are all equivalent:

- 1. *L* is denoted by a *regular expression*
- 2. *L* is accepted by a *deterministic FSA*
- 3. *L* is accepted by a *non-deterministic FSA*

(See the course text for the proof.)

Closure Properties of FSA-accepted Languages

Q: What do we mean by *closure*?

Theorem Every *regular* language L is *closed* under *complementation*, *union*, *intersection*, *concatenation* and the *Kleene star* operation.

Q: What does this mean?

Proof of $L \cup L'$.

- Let M be a *NFSA* that accepts L.
- Let M' be a *NFSA* that accepts L'.

Q: How can we *construct* M_{\cup} that will accept *either* language?

Proof of L^* .

Given *M* accepting *L*, how can we build a new *NFSA* to *accept* L^* ?

Regular Languages

Q: How can we prove that a *language L* is *regular*?

Q: How can we prove that a \mathcal{L} is *not* regular?

- Any *FSA* has a *finite* number of *states*, say *n*.
- Therefore if *L* is *infinite*, then *L* has strings with > *n* symbols.
- **Q:** What does this imply about at least one state of the FSA?
- Repeating this *cycle* an *arbitrary number* of times must yield another *string* in *L*.
- **Q:** What does this mean?
- **Q:** How does this help us?