
Formal Languages

We’ll use the English language as a running example.

Definitions.

• A string is a finite set of symbols, where
each symbol belongs to an alphabet de-
noted by ⌃ .

• The set of all strings that can be constructed
from an alphabet ⌃ is ⌃

⇤.

• If x, y are two strings of lengths |x| and |y|,
then:

– xy or x � y is the concatenation of x and
y , so the length, |xy| = |x|+ |y|

– (x)R is the reversal of x

– the kth-power of x is

xk
=

⇢
✏ if k = 0

xk�1 � x, if k > 0

– equal, substring, prefix, suffix are de-
fined in the expected ways.

– Note that the language ; is not the same
language as ✏.

Examples.

73

Operations on Languages

Suppose that LE is the English language and that LF is the
French language over an alphabet ⌃ .

• Complementation: L = ⌃

⇤ � L

LE is the set of all words that do NOT belong in the
english dictionary .

• Union: L
1

[L
2

= {x : x 2 L
1

or x 2 L
2

}

LE [LF is the set of all english and french words.

• Intersection: L
1

\ L
2

= {x : x 2 L
1

and x 2 L
2

}

LE \ LF is the set of all words that belong to both english
and french...eg., journal

• Concatenation: L
1

� L
2

is the set of all strings xy such
that x 2 L

1

and y 2 L
2

Q: What is an example of a string in LE � LF?
goodnuit
Q: What if LE or LF is ;? What is LE � LF?
;

74

• Kleene star: L

⇤. Also called the Kleene Closure of L and
is the concatenation of zero or more strings in L.
Recursive Definition

– Base Case: ✏ 2 L

– Induction Step: If x 2 L⇤ and y 2 L then xy 2 L⇤

• Language Exponentiation Repeated concatenation of a
language L.

Lk
=

⇢
{✏} if k = 0

Lk�1 � L, if k > 0

• Reversal The language Rev(L) is the language that results
from reversing all strings in L.

Q: How do we define the strings that belong to a language such
as English, French, Java, arithmetic, etc.

Example: For the language of arithmetic, LA:

Define ⌃ = {N} [{+,�,=, (,)} then

“)((2(+4(= ” 2 ⌃

⇤

but
“)((2(+4(= ” 62 LA.

75

Regular Expressions

A regular expression over an alphabet ⌃ consists of

1. Symbols in the alphabet

2. The symbols {+, (,),⇤ } where + means OR and ⇤ means
zero or more times.

Recursive Definition.

Let the set RE of ALL regular expressions, be the smallest set
such that:

• Basis: ;, ✏, a 2 RE,8a 2 ⌃

• Inductive Step: if R and S are regular expressions 2 RE ,
then so are: (R+ S), (RS), R⇤

Examples: Let ⌃ = {0,1}:

Regular Expression Corresponding Language
(0 + 1)

⇤
⌃

((0 + 1)(0 + 1)

⇤
) all non-empty strings in ⌃

⇤

((0 + 1)(0 + 1))

⇤ all even length strings

✏+0+ 0(0+ 1)

⇤
0 all strings that don’t begin/end with 1

11(0 + 11)

⇤ all strings with 1’s in pairs

76

Relating Regular Expressions to Languages

Let L(R) represent the language constructed by the regular ex-
pression R.

We define L(R) inductively as follows:

Base Case:

• L(;) = ;

• L(✏) = {✏}

• For any a 2 ⌃ , L(a) = {a}

Induction Step: If R is a regular expression, then by definition
of R,

• R = ST , or

• R = S + T , or

• R = S⇤

where S and T are regular expressions and by induction, L(S)
and L(T) have been defined.

77

We can define the language denoted by R, ie., L(R) as follows:

• L((S + T)) = L(S) union L(T)

• L((ST)) = L(S) cat L(T)

• L(S⇤
) = (L(S))⇤

Q: Why is this definition important?

We can construct the language defined by a regular expression
by building the set from smaller regular expressions.

Example

Q: What is a regular expression R

A

to denote the language of
strings consisting of only an even number of a’s?

e.g., aa, aaaa, aaaaaaaa etc.

(aa)⇤

Q: What is a regular expression RB for the language of strings
consisting of 1 or more triples of b’s? e.g., bbb, bbbbbb, bbbbbbbbb.

bbb(bbb)⇤

Q: What is a regular expression, RAB, for the language of strings
consisting of an even number of a’s sandwiched between 1 or
more triples of b?

eg., bbbaabbb, or bbbaaaaaabbb

RBRARB = bbb(bbb)⇤(aa)⇤bbb(bbb)⇤

78

Equivalence. We say that two regular expressions R and S are
equivalent if they describe the same language.

In other words, if L(R) = L(S) for two regular expressions R

and S then R = S .

Examples.

• Are R and S equivalent?

R = a⇤(ba⇤ba⇤)⇤ and S = a⇤(ba⇤b)⇤a⇤

no.
Q: Why?
bbaabb is in R but not in S.

• Are R = (a(a + b)

⇤
) and S = (a(a + b))

⇤ equivalent?
NO. R denotes strings all nonempty strings starting with a
and S denotes all strings that can be split into pairs of sym-
bols such that the first symbol is always an a

Regular Expression Equivalences

There exist equivalence axioms for regular expressions that are
very similar to those for predicate/propositional logic.

Equivalences for Regular Expressions

• Commutativity of union: (R+S) = (S+R)

• Associativity of union: (R+S) + T = R+(S+T)

• Associativity of concatenation: (RS)T = R(ST)

• Left distributivity: R(S+T) = RS + RT

• Right distributivity: (S+T)R = SR + TR

• Identity of Union: R + ; = R

• Identity of Concatenation: R✏

• Annihilator for concatenation: R; = ; = ;R

• Idempotence of Kleene star: R⇤⇤
= R⇤

Theorem (Substitution) If two substrings R and R

0 are equiva-
lent then if R is a substring of S then replacing R by R

0 constructs
a new regular expression equivalent to S .

79

Equivalent Regular Expressions

Q: How can we determine whether two regular expressions de-
note the same language?

To show equivalency, one method is to use the previous axioms
to construct a proof.

To show that two regular expressions are NOT equivalent we only
need to find a string that belongs to the language denoted by one
expression but not the other.

Examples.

Prove that
(0110+ 01)(10)

⇤ ⌘ 01(10)

⇤

Proof.

(0110+ 01)(10)

⇤ ⌘ (0110+ 01✏)(10)⇤substitution, 10 by 10 ✏.

⌘ (01(10+ ✏))(10)⇤ by distributivity
⌘ 01((10 + ✏)(10)⇤) assoc. of concat.
⌘ 01((✏+10)(10)

⇤
) commutativity of union

⌘ 01(✏10⇤
+10(10)

⇤
) right distributive

⌘ 01(10

⇤
+10(10)

⇤
) substitution, 10✏ by 10

⌘ 01(10)

⇤ since L(10⇤
) includes every string

2L(10(10)⇤)

80

Another Example.

Prove that R denotes the language L of all strings that contain
an even number of 0s.

R = 1

⇤
(01

⇤
01

⇤
)

⇤

Equivalently,

x 2 L , x 2 L(R)

Proof.

())

• Let x 2 L(R).

• Then x 2L(1⇤
(01

⇤
01

⇤
)

⇤
) = L(1⇤

)L(01⇤
)L(01⇤

)

• Let x = y(zw)

⇤ then y 2 L(1⇤
), z 2 L(01⇤

), w 2 L(01⇤
)

• Therefore, y has zero 0s

• Therefore, w has 1 zero

• Therefore, z has 1 zero

• So, x = y(zw)

⇤ has zero 0s plus a multiple of 2 zeros.

81

(()

• Suppose that x is an arbitrary string in L.

•) x has an even number of 0s. Denote by 2k for some
k 2 N.

• How can we rewrite x consisting of 0s and 1s? x = 1 . . .1 0 1 . . .1 0 1 . . .1 0 1 . . .1 0....
for 2k 0’s.

• Let x = y

0

, y
1

, y
2

, . . . , y
k

, so y
0

= 1

n
1 2 L(1⇤

)

yi = 0 1 . . .1 0 1 . . .1 = 01

ni
01

mi 2 L(01⇤
01

⇤
) (from

the 2i� 1st 0 to just before the (2i+1)st 0 (if it exists))
yi 2 L(01⇤

01

⇤
),1 i k

• So x = y
0

y
1

. . . yk 2 L(1⇤
)(L(01⇤

01

⇤
))

⇤
= L(1(01⇤

01

⇤
)

⇤
).

Q: Can every possible type of string be represented by a regular
expression?

To answer this, we turn to Finite State Machines.

82

String Matching and Finite State Machines

• Given source code (say in Java)

• Find the comments – may need to remove comments for
software transformations

QuickSort.java

Below is the syntax highlighted version of QuickSort.java from §4.2 Sorting and Searching.

/***

 * Compilation: javac QuickSort.java

 * Execution: java QuickSort N

 *

 * Generate N random real numbers between 0 and 1 and quicksort them.

 *

 * On average, this quicksort algorithm runs in time proportional to

 * N log N, independent of the input distribution. The algorithm

 * guards against the worst-case by randomly shuffling the elements

 * before sorting. In addition, it uses Sedgewick's partitioning

 * method which stops on equal keys. This protects against cases

 * that make many textbook implementations, even randomized ones,

 * go quadratic (e.g., all keys are the same).

 *

 ***/

public class QuickSort {

 private static long comparisons = 0;

 private static long exchanges = 0;

 /***

 * Quicksort code from Sedgewick 7.1, 7.2.

 ***/

 public static void quicksort(double[] a) {

 shuffle(a); // to guard against worst-case

 quicksort(a, 0, a.length - 1);

 }

 public static void quicksort(double[] a, int left, int right) {

 if (right <= left) return;

 int i = partition(a, left, right);

 quicksort(a, left, i-1);

 quicksort(a, i+1, right);

 }

 private static int partition(double[] a, int left, int right) {

 int i = left - 1;

 int j = right;

 while (true) {

 while (less(a[++i], a[right])) // find item on left to swap

 ; // a[right] acts as sentinel

 while (less(a[right], a[--j])) // find item on right to swap

 if (j == left) break; // don't go out-of-bounds

 if (i >= j) break; // check if pointers cross

 exch(a, i, j); // swap two elements into place

 }

 exch(a, i, right); // swap with partition element

 return i;

 }

83

Q. What patterns are we looking for?

// text \nl or /⇤ text ⇤/

Q. What do we know if we see a / followed by a

⇤ we are in a comment

/ we are in a comment

text not in comment

Q. What do we know if we see /⇤ followed by a

⇤ might be at the end of a comment if next char is /

/ not end of comment

text in the comment

Let’s represent these ideas with a diagram.

84

Deterministic Finite State Automata
(DFSA or DFA)

A DFA consists of:

• Q. a set of states (this set is finite)

• ⌃ . an alphabet that strings are composed from

• s 2 Q. a start state–where you feed in the string

• F ✓ Q. a set of accepting/final states

• �. Q ⇥ ⌃ ! Q this is the transition function, means that
you pass it the current state and the input and it tells you
which state to go to.

Comment Example.

• Q = {start, /, //, /*, *, accept }

• ⌃ = {text, /, \nl, *}

• s = start

• F = accept

• �: Q⇥⌃ ! Q

85

Example cont...

�(state, input) / * text \nl
start

/
//
/*

accept

Q: What if we want to know which state the input “**//” ends at if
we begin at start?

Two Options.

1. Compute: �(�(�(�(start, *),*), /),/).

2. Define �⇤. �⇤ takes a string and returns the final state after
processing the entire string.
Then, �(�(�(�(start, *),*), /),/)= �⇤(start,**//) = //

Formal definition of �⇤(q, x) (reading left to right):

�⇤(q, x) =

⇢
q if x = ✏

�(�⇤(q, z), a) if x = za, a 2 ⌃ , z 2 ⌃

⇤

86

Regular Expressions and DFA

• The set of strings accepted by an automaton defines a lan-
gauge.

• For automaton M the language M accepts is L(M).

• Given regular expression R, find M such that

L(R) = L(M).

Examples.

Let regular expression R
1

= (1+ 00)

⇤.

Q. Which strings belong to L(R
1

)?

L(R
1

) = {x 2 {0,1} | all 0’s are in pairs, i.e., 00}

Q: What is a DFA M
1

such that L(M
1

) = L(R
1

)?

87

DFSA Conventions

• Strings ending at a final state are accepted (if we want to
accept/reject).

• Drop dead states.

• Group elements that go from and to the same states.

Examples cont.

Let regular expression R
2

= 1(1 + (01))

⇤.

Q. Which strings belong to L(R
2

)?

L(R
2

) = {x 2 {0,1} | every 0 is sandwiched between 1s.}

Q: What is a DFA M
2

such that L(M
2

) = L(R
2

)?

88

� : �(q
0

,0) = d
1

�(q
0

,1) = q
1

�(q
1

,0) = q
2

�(q
1

,1) = q
1

�(q
2

,0) = d
1

�(q
2

,1) = q
1

�(d
1

,0 or 1) = d
1

Q: How do we know that our machine M is correct?

We can show this by proving that �⇤(q
0

, x) only accepts those
strings in L(R

2

).

Q: What might be a good way to do this? INDUCTION!

Proving a DFA is Correct

Q: What should we do induction on?

either the length of the string, or on the structure of the string...same
thing

Q: What should our S(x) include?

it should say something about �⇤ and the types of strings x that
are accepted.

89

Proof that L(M
2

) = L(R
2

):

0,1

q0 q1

q2

1 1

010

d
0

L(R
2

) = {x 2 {0,1} | every 0 is sandwiched between 1s }

S(x) : �⇤(q
0

, x) =

8
><

>:

q
0

if x is empty, x 2 L(R
2

)

q
1

if x 2 L(R
2

)

q
2

if x ends in 0 (other 0s are sandwiched by 1s)
d
1

if x has a zero not preceded by a 1, x 62 L(R
2

)

RTP S(x) for all x 2 ⌃

⇤.

Base Case. x = ✏: from our diagram we see that the machine
stays at q

0

so �⇤ is correct.

IS. Assume that S(y) holds for y 2 ⌃

⇤ and consider x = ya
where a 2 ⌃ .

Two cases: Case 1. a = 1. and Case 2: a = 0.

90

Case 1. a = 1. Then �⇤(q
0

, y1) = �(�⇤(q
0

, y),1) by definition
of �⇤.

�⇤(q
0

, y1) =

8
><

>:

�(q
0

,1) if y is empty
�(q

1

,1) if y 2 L(R
2

)

�(q
2

,1) if y ends in a 0, all other 0s sandwiched between 1s.
�(d

1

,1) if y has a zero not preceded by a 1, y 62 L(R
2

)

Q. Why can we write this?

This is by structural induction.

We can rewrite in terms of x to get:

�⇤(q
0

, y1) =

8
>>>>><

>>>>>:

�(q
0

,1) if x is just a 1, so x 2 L(R
2

)

�(q
1

,1) if x 2 L(R
2

) since if y 2 L(R
2

) adding
a 1 doesn’t contradict L(R

2

)

�(q
2

,1) if x 2 L(R
2

) as adding a 1 to the end
sandwiches the last 0 between 1s.

�(d
1

,1) if x has a zero not preceded by a 1, x 62 L(R
2

)

from the definition of � (or the diagram):

�⇤(q
0

, y1) =

8
><

>:

q
1

if x 2 L(R
2

)

q
1

if x 2 L(R
2

)

q
1

if x 2 L(R
2

)

d
1

if x 62 L(R
2

)

91

Case 2: a = 0 Then �⇤(q
0

, y0) = �(�⇤(q
0

, y),0) by definition
of �⇤.

=

8
><

>:

�(q
0

,0) if y is empty, y 2 L(R
2

)

�(q
1

,0) if all 0s in y sandwiched by 1s
�(q

2

,0) if y ends in 0
�(d

1

,0) if y has a 0 not preceded by a 1

because x ends with a 0,

=

8
><

>:

�(q
0

,0) if x has a 0 that is not preceded by a 1, x 62 L(R
2

)

�(q
1

,0) if x ends in a 0, so x 62 L(R
2

)

�(q
2

,0) if x ends in 00, so x 62 L(R
2

)

�(d
1

,0) if x has a 0 not preceded by a 1, , so x 62 L(R
2

)

from the state diagram and definition of �

=

8
><

>:

d
1

if x has a 0 that is not preceded by a 1, x 62 L(R
2

)

q
2

if x ends in a 0 but all other 0s sandwiched by 1s
d
1

if x has a 0 not preceded by a 1, x 62 L(R
2

)

d
1

if x has a 0 not preceded by a 1, , x 62 L(R
2

)

Therefore, our DFA satisfies the invariant S(x).

92

Non-Deterministic Finite State Automata (NFA or
NFSA)

Q: What does deterministic mean?

that the path is determined, i.e., fixed, there is no choice.

NFSA. A non-deterministic finite state automata (NFSA) extends
DFSA by allowing choice at each state.

Differences between DFSA and NFSA:

• NFSA. Given a state qi and an input x there can be more
than one possible transition, i.e,

�⇤(q, x) = {set of qi}

• NFSA. Given state qi, we can have an ✏ transition.

�⇤(qi, ✏) = qj

This means we can spontaneously jump from qi to qj.

Q: How do we know if a string is accepted by an NFSA?

We must check all possible paths and as long as one of them
ends in an accepting state, then the string is accepted.

93

Examples of NFSA

Consider the strings that are represented by the regular expres-
sion: (010+ 01)⇤

NFSA:

(q
0

,0) ! q
1

(q
1

,1) ! q
2

(q
2

,0, ✏) ! q
0

DFSA:

(q
0

,0) ! q
1

(q
1

,1) ! q
2

(q
2

,0) ! q
3

(q
3

,1) ! q
2

(q
3

,0) ! q
1

Formally. An NFSA, is a machine M = (Q,⌃ , �, s, F) where

• each of Q,⌃ , s, F are as for a DFSA.

• � : Q⇥ (⌃ [{✏}) ! P(Q) (P(Q) is a set of states).

• �⇤ : Q⇥ ⌃

⇤ ! P(Q).

94

Limitations of DFSA and NFSA

Q: Can every set of strings be recognized by a DFSA? an NFSA?

No, No

Q: How much more powerful is an NFSA over a DFSA?

Not more powerful

Detailed answers.

• Only strings representable by regular expressions can be
recognized by an NFSA or DFSA.

• There exists an algorithm to convert between deterministic
and non-deterministic machines.

Theorem. If L is a regular language then the following are all
equivalent:

1. L is denoted by a regular expression

2. L is accepted by a deterministic FSA

3. L is accepted by a non-deterministic FSA

(See the course text for the proof.)

95

Closure Properties of FSA-accepted Languages

Q: What do we mean by closure?

if we perform some operation on elements of a set, the new ele-
ment still belongs to the set.

Theorem Every regular language L is closed under complemen-
tation, union, intersection, concatenation and the Kleene star op-
eration.

Q: What does this mean?

If L and L0 are regular languages, then so too are L \ L0, L [
L0, L, LL0, L⇤.

Proof of L [L0.

• Let M be a NFSA that accepts L.

• Let M 0 be a NFSA that accepts L0.

Q: How can we construct M[that will accept either language?

add a new start state, s with ✏ transitions to the start states of M 0

and M .

Proof of L⇤.

Given M accepting L, how can we build a new NFSA to accept
L⇤?

from each accepting state we make an epsilon transission back
to the start (which is a new start to allow the empty string.

96

Regular Languages

Q: How can we prove that a language L is regular?

build a DFSA or a regular expression

Q: How can we prove that a L is not regular?

• Any FSA has a finite number of states, say n.

• Therefore if L is infinite, then L has strings with > n sym-
bols.

• Q: What does this imply about at least one state of the
FSA? we must at some point return to an earlier state,
say qi.

• Repeating this cycle an arbitrary number of times must yield
another string in L.

• Q: What does this mean?
Any string on > n symbols, must have a portion of it that is
just a cycle being repeated some number of times.

• Q: How does this help us?
If we can show for a particular language that no such cycling
substring can exist, then the language cannot be regular

97

