
Formal Languages

We’ll use the English language as a running example.

Definitions.

• A string is a finite set of symbols, where
each symbol belongs to an alphabet de-
noted by ⌃ .

• The set of all strings that can be constructed
from an alphabet ⌃ is ⌃

⇤.

• If x, y are two strings of lengths |x| and |y|,
then:

– xy or x � y is the concatenation of x and
y , so the length, |xy| = |x|+ |y|

– (x)R is the reversal of x

– the kth-power of x is

xk
=

⇢
✏ if k = 0

xk�1 � x, if k > 0

– equal, substring, prefix, suffix are de-
fined in the expected ways.

– Note that the language ; is not the same
language as ✏.

Examples.
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Operations on Languages

Suppose that LE is the English language and that LF is the
French language over an alphabet ⌃ .

• Complementation: L = ⌃

⇤ � L

LE is the set of all words that do NOT belong in the
english dictionary .

• Union: L
1

[ L
2

= {x : x 2 L
1

or x 2 L
2

}

LE [ LF is the set of all english and french words.

• Intersection: L
1

\ L
2

= {x : x 2 L
1

and x 2 L
2

}

LE \ LF is the set of all words that belong to both english
and french...eg., journal

• Concatenation: L
1

� L
2

is the set of all strings xy such
that x 2 L

1

and y 2 L
2

Q: What is an example of a string in LE � LF?
goodnuit
Q: What if LE or LF is ;? What is LE � LF?
;
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• Kleene star: L

⇤. Also called the Kleene Closure of L and
is the concatenation of zero or more strings in L.
Recursive Definition

– Base Case: ✏ 2 L

– Induction Step: If x 2 L⇤ and y 2 L then xy 2 L⇤

• Language Exponentiation Repeated concatenation of a
language L.

Lk
=

⇢
{✏} if k = 0

Lk�1 � L, if k > 0

• Reversal The language Rev(L) is the language that results
from reversing all strings in L.

Q: How do we define the strings that belong to a language such
as English, French, Java, arithmetic, etc.

Example: For the language of arithmetic, LA:

Define ⌃ = {N} [ {+,�,=, (, )} then

“)((2(+4(= ” 2 ⌃

⇤

but
“)((2(+4(= ” 62 LA.
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Regular Expressions

A regular expression over an alphabet ⌃ consists of

1. Symbols in the alphabet

2. The symbols {+, (, ),⇤ } where + means OR and ⇤ means
zero or more times.

Recursive Definition.

Let the set RE of ALL regular expressions, be the smallest set
such that:

• Basis: ;, ✏, a 2 RE,8a 2 ⌃

• Inductive Step: if R and S are regular expressions 2 RE ,
then so are: (R+ S), (RS), R⇤

Examples: Let ⌃ = {0,1}:

Regular Expression Corresponding Language
(0 + 1)

⇤
⌃

((0 + 1)(0 + 1)

⇤
) all non-empty strings in ⌃

⇤

((0 + 1)(0 + 1))

⇤ all even length strings

✏+0+ 0(0+ 1)

⇤
0 all strings that don’t begin/end with 1

11(0 + 11)

⇤ all strings with 1’s in pairs
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Relating Regular Expressions to Languages

Let L(R) represent the language constructed by the regular ex-
pression R.

We define L(R) inductively as follows:

Base Case:

• L(;) = ;

• L(✏) = {✏}

• For any a 2 ⌃ , L(a) = {a}

Induction Step: If R is a regular expression, then by definition
of R,

• R = ST , or

• R = S + T , or

• R = S⇤

where S and T are regular expressions and by induction, L(S)
and L(T ) have been defined.
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We can define the language denoted by R, ie., L(R) as follows:

• L((S + T )) = L(S) union L(T )

• L((ST )) = L(S) cat L(T )

• L(S⇤
) = (L(S))⇤

Q: Why is this definition important?

We can construct the language defined by a regular expression
by building the set from smaller regular expressions.

Example

Q: What is a regular expression R

A

to denote the language of
strings consisting of only an even number of a’s?

e.g., aa, aaaa, aaaaaaaa etc.

(aa)⇤

Q: What is a regular expression RB for the language of strings
consisting of 1 or more triples of b’s? e.g., bbb, bbbbbb, bbbbbbbbb.

bbb(bbb)⇤

Q: What is a regular expression, RAB, for the language of strings
consisting of an even number of a’s sandwiched between 1 or
more triples of b?

eg., bbbaabbb, or bbbaaaaaabbb

RBRARB = bbb(bbb)⇤(aa)⇤bbb(bbb)⇤
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Equivalence. We say that two regular expressions R and S are
equivalent if they describe the same language.

In other words, if L(R) = L(S) for two regular expressions R

and S then R = S .

Examples.

• Are R and S equivalent?

R = a⇤(ba⇤ba⇤)⇤ and S = a⇤(ba⇤b)⇤a⇤

no.
Q: Why?
bbaabb is in R but not in S.

• Are R = (a(a + b)

⇤
) and S = (a(a + b))

⇤ equivalent?
NO. R denotes strings all nonempty strings starting with a
and S denotes all strings that can be split into pairs of sym-
bols such that the first symbol is always an a



Regular Expression Equivalences

There exist equivalence axioms for regular expressions that are
very similar to those for predicate/propositional logic.

Equivalences for Regular Expressions

• Commutativity of union: (R+S) = (S+R)

• Associativity of union: (R+S) + T = R+(S+T)

• Associativity of concatenation: (RS)T = R(ST)

• Left distributivity: R(S+T) = RS + RT

• Right distributivity: (S+T)R = SR + TR

• Identity of Union: R + ; = R

• Identity of Concatenation: R✏

• Annihilator for concatenation: R; = ; = ;R

• Idempotence of Kleene star: R⇤⇤
= R⇤

Theorem (Substitution) If two substrings R and R

0 are equiva-
lent then if R is a substring of S then replacing R by R

0 constructs
a new regular expression equivalent to S .
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Equivalent Regular Expressions

Q: How can we determine whether two regular expressions de-
note the same language?

To show equivalency, one method is to use the previous axioms
to construct a proof.

To show that two regular expressions are NOT equivalent we only
need to find a string that belongs to the language denoted by one
expression but not the other.

Examples.

Prove that
(0110+ 01)(10)

⇤ ⌘ 01(10)

⇤

Proof.

(0110+ 01)(10)

⇤ ⌘ (0110+ 01✏)(10)⇤substitution, 10 by 10 ✏.

⌘ (01(10+ ✏))(10)⇤ by distributivity
⌘ 01((10 + ✏)(10)⇤) assoc. of concat.
⌘ 01((✏+10)(10)

⇤
) commutativity of union

⌘ 01(✏10⇤
+10(10)

⇤
) right distributive

⌘ 01(10

⇤
+10(10)

⇤
) substitution, 10✏ by 10

⌘ 01(10)

⇤ since L(10⇤
) includes every string

2L(10(10)⇤)

80



Another Example.

Prove that R denotes the language L of all strings that contain
an even number of 0s.

R = 1

⇤
(01

⇤
01

⇤
)

⇤

Equivalently,

x 2 L , x 2 L(R)

Proof.

())

• Let x 2 L(R).

• Then x 2L(1⇤
(01

⇤
01

⇤
)

⇤
) = L(1⇤

)L(01⇤
)L(01⇤

)

• Let x = y(zw)

⇤ then y 2 L(1⇤
), z 2 L(01⇤

), w 2 L(01⇤
)

• Therefore, y has zero 0s

• Therefore, w has 1 zero

• Therefore, z has 1 zero

• So, x = y(zw)

⇤ has zero 0s plus a multiple of 2 zeros.
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(()

• Suppose that x is an arbitrary string in L.

• ) x has an even number of 0s. Denote by 2k for some
k 2 N.

• How can we rewrite x consisting of 0s and 1s? x = 1 . . .1 0 1 . . .1 0 1 . . .1 0 1 . . .1 0....
for 2k 0’s.

• Let x = y

0

, y
1

, y
2

, . . . , y
k

, so y
0

= 1

n
1 2 L(1⇤

)

yi = 0 1 . . .1 0 1 . . .1 = 01

ni
01

mi 2 L(01⇤
01

⇤
) ( from

the 2i� 1st 0 to just before the (2i+1)st 0 (if it exists))
yi 2 L(01⇤

01

⇤
),1  i  k

• So x = y
0

y
1

. . . yk 2 L(1⇤
)(L(01⇤

01

⇤
))

⇤
= L(1(01⇤

01

⇤
)

⇤
).

Q: Can every possible type of string be represented by a regular
expression?

To answer this, we turn to Finite State Machines.
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String Matching and Finite State Machines

• Given source code (say in Java)

• Find the comments – may need to remove comments for
software transformations

QuickSort.java

Below is the syntax highlighted version of QuickSort.java from §4.2 Sorting and Searching.

/*************************************************************************

 *  Compilation:  javac QuickSort.java

 *  Execution:    java QuickSort N

 *

 *  Generate N random real numbers between 0 and 1 and quicksort them.

 *

 *  On average, this quicksort algorithm runs in time proportional to

 *  N log N, independent of the input distribution. The algorithm

 *  guards against the worst-case by randomly shuffling the elements

 *  before sorting. In addition, it uses Sedgewick's partitioning

 *  method which stops on equal keys. This protects against cases

 *  that make many textbook implementations, even randomized ones,

 *  go quadratic (e.g., all keys are the same).

 *

 *************************************************************************/

public class QuickSort {

    private static long comparisons = 0;

    private static long exchanges   = 0;

   /***********************************************************************

    *  Quicksort code from Sedgewick 7.1, 7.2.

    ***********************************************************************/

    public static void quicksort(double[] a) {

        shuffle(a);                        // to guard against worst-case

        quicksort(a, 0, a.length - 1);

    }

    public static void quicksort(double[] a, int left, int right) {

        if (right <= left) return;

        int i = partition(a, left, right);

        quicksort(a, left, i-1);

        quicksort(a, i+1, right);

    }

    private static int partition(double[] a, int left, int right) {

        int i = left - 1;

        int j = right;

        while (true) {

            while (less(a[++i], a[right]))      // find item on left to swap

                ;                               // a[right] acts as sentinel

            while (less(a[right], a[--j]))      // find item on right to swap

                if (j == left) break;           // don't go out-of-bounds

            if (i >= j) break;                  // check if pointers cross

            exch(a, i, j);                      // swap two elements into place

        }

        exch(a, i, right);                      // swap with partition element

        return i;

    }
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Q. What patterns are we looking for?

// text \nl or /⇤ text ⇤/

Q. What do we know if we see a / followed by a

⇤ we are in a comment

/ we are in a comment

text not in comment

Q. What do we know if we see /⇤ followed by a

⇤ might be at the end of a comment if next char is /

/ not end of comment

text in the comment

Let’s represent these ideas with a diagram.
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Deterministic Finite State Automata
(DFSA or DFA)

A DFA consists of:

• Q. a set of states (this set is finite)

• ⌃ . an alphabet that strings are composed from

• s 2 Q. a start state–where you feed in the string

• F ✓ Q. a set of accepting/final states

• �. Q ⇥ ⌃ ! Q this is the transition function, means that
you pass it the current state and the input and it tells you
which state to go to.

Comment Example.

• Q = {start, /, //, /*, *, accept }

• ⌃ = {text, /, \nl, *}

• s = start

• F = accept

• �: Q⇥⌃ ! Q
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Example cont...

�(state, input) / * text \nl
start

/
//
/*

accept

Q: What if we want to know which state the input “**//” ends at if
we begin at start?

Two Options.

1. Compute: �(�(�(�(start, *),*), /),/).

2. Define �⇤. �⇤ takes a string and returns the final state after
processing the entire string.
Then, �(�(�(�(start, *),*), /),/)= �⇤(start,**//) = //

Formal definition of �⇤(q, x) (reading left to right):

�⇤(q, x) =

⇢
q if x = ✏

�(�⇤(q, z), a) if x = za, a 2 ⌃ , z 2 ⌃

⇤
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Regular Expressions and DFA

• The set of strings accepted by an automaton defines a lan-
gauge.

• For automaton M the language M accepts is L(M ).

• Given regular expression R, find M such that

L(R) = L(M).

Examples.

Let regular expression R
1

= (1+ 00)

⇤.

Q. Which strings belong to L(R
1

)?

L(R
1

) = {x 2 {0,1} | all 0’s are in pairs, i.e., 00}

Q: What is a DFA M
1

such that L(M
1

) = L(R
1

)?
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DFSA Conventions

• Strings ending at a final state are accepted (if we want to
accept/reject).

• Drop dead states.

• Group elements that go from and to the same states.

Examples cont.

Let regular expression R
2

= 1(1 + (01))

⇤.

Q. Which strings belong to L(R
2

)?

L(R
2

) = {x 2 {0,1} | every 0 is sandwiched between 1s.}

Q: What is a DFA M
2

such that L(M
2

) = L(R
2

)?
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� : �(q
0

,0) = d
1

�(q
0

,1) = q
1

�(q
1

,0) = q
2

�(q
1

,1) = q
1

�(q
2

,0) = d
1

�(q
2

,1) = q
1

�(d
1

,0 or 1) = d
1

Q: How do we know that our machine M is correct?

We can show this by proving that �⇤(q
0

, x) only accepts those
strings in L(R

2

).

Q: What might be a good way to do this? INDUCTION!

Proving a DFA is Correct

Q: What should we do induction on?

either the length of the string, or on the structure of the string...same
thing

Q: What should our S(x) include?

it should say something about �⇤ and the types of strings x that
are accepted.
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Proof that L(M
2

) = L(R
2

):

0,1

q0 q1

q2

1 1

010

d
0

L(R
2

) = {x 2 {0,1} | every 0 is sandwiched between 1s }

S(x) : �⇤(q
0

, x) =

8
><

>:

q
0

if x is empty, x 2 L(R
2

)

q
1

if x 2 L(R
2

)

q
2

if x ends in 0 (other 0s are sandwiched by 1s)
d
1

if x has a zero not preceded by a 1, x 62 L(R
2

)

RTP S(x) for all x 2 ⌃

⇤.

Base Case. x = ✏: from our diagram we see that the machine
stays at q

0

so �⇤ is correct.

IS. Assume that S(y) holds for y 2 ⌃

⇤ and consider x = ya
where a 2 ⌃ .

Two cases: Case 1. a = 1. and Case 2: a = 0.
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Case 1. a = 1. Then �⇤(q
0

, y1) = �(�⇤(q
0

, y),1) by definition
of �⇤.

�⇤(q
0

, y1) =

8
><

>:

�(q
0

,1) if y is empty
�(q

1

,1) if y 2 L(R
2

)

�(q
2

,1) if y ends in a 0, all other 0s sandwiched between 1s.
�(d

1

,1) if y has a zero not preceded by a 1, y 62 L(R
2

)

Q. Why can we write this?

This is by structural induction.

We can rewrite in terms of x to get:

�⇤(q
0

, y1) =

8
>>>>><

>>>>>:

�(q
0

,1) if x is just a 1, so x 2 L(R
2

)

�(q
1

,1) if x 2 L(R
2

) since if y 2 L(R
2

) adding
a 1 doesn’t contradict L(R

2

)

�(q
2

,1) if x 2 L(R
2

) as adding a 1 to the end
sandwiches the last 0 between 1s.

�(d
1

,1) if x has a zero not preceded by a 1, x 62 L(R
2

)

from the definition of � (or the diagram):

�⇤(q
0

, y1) =

8
><

>:

q
1

if x 2 L(R
2

)

q
1

if x 2 L(R
2

)

q
1

if x 2 L(R
2

)

d
1

if x 62 L(R
2

)
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Case 2: a = 0 Then �⇤(q
0

, y0) = �(�⇤(q
0

, y),0) by definition
of �⇤.

=

8
><

>:

�(q
0

,0) if y is empty, y 2 L(R
2

)

�(q
1

,0) if all 0s in y sandwiched by 1s
�(q

2

,0) if y ends in 0
�(d

1

,0) if y has a 0 not preceded by a 1

because x ends with a 0,

=

8
><

>:

�(q
0

,0) if x has a 0 that is not preceded by a 1, x 62 L(R
2

)

�(q
1

,0) if x ends in a 0, so x 62 L(R
2

)

�(q
2

,0) if x ends in 00, so x 62 L(R
2

)

�(d
1

,0) if x has a 0 not preceded by a 1, , so x 62 L(R
2

)

from the state diagram and definition of �

=

8
><

>:

d
1

if x has a 0 that is not preceded by a 1, x 62 L(R
2

)

q
2

if x ends in a 0 but all other 0s sandwiched by 1s
d
1

if x has a 0 not preceded by a 1, x 62 L(R
2

)

d
1

if x has a 0 not preceded by a 1, , x 62 L(R
2

)

Therefore, our DFA satisfies the invariant S(x).
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Non-Deterministic Finite State Automata (NFA or
NFSA)

Q: What does deterministic mean?

that the path is determined, i.e., fixed, there is no choice.

NFSA. A non-deterministic finite state automata (NFSA) extends
DFSA by allowing choice at each state.

Differences between DFSA and NFSA:

• NFSA. Given a state qi and an input x there can be more
than one possible transition, i.e,

�⇤(q, x) = {set of qi}

• NFSA. Given state qi, we can have an ✏ transition.

�⇤(qi, ✏) = qj

This means we can spontaneously jump from qi to qj.

Q: How do we know if a string is accepted by an NFSA?

We must check all possible paths and as long as one of them
ends in an accepting state, then the string is accepted.
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Examples of NFSA

Consider the strings that are represented by the regular expres-
sion: (010+ 01)⇤

NFSA:

(q
0

,0) ! q
1

(q
1

,1) ! q
2

(q
2

,0, ✏) ! q
0

DFSA:

(q
0

,0) ! q
1

(q
1

,1) ! q
2

(q
2

,0) ! q
3

(q
3

,1) ! q
2

(q
3

,0) ! q
1

Formally. An NFSA, is a machine M = (Q,⌃ , �, s, F ) where

• each of Q,⌃ , s, F are as for a DFSA.

• � : Q⇥ (⌃ [ {✏}) ! P(Q) (P(Q) is a set of states).

• �⇤ : Q⇥ ⌃

⇤ ! P(Q).
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Limitations of DFSA and NFSA

Q: Can every set of strings be recognized by a DFSA? an NFSA?

No, No

Q: How much more powerful is an NFSA over a DFSA?

Not more powerful

Detailed answers.

• Only strings representable by regular expressions can be
recognized by an NFSA or DFSA.

• There exists an algorithm to convert between deterministic
and non-deterministic machines.

Theorem. If L is a regular language then the following are all
equivalent:

1. L is denoted by a regular expression

2. L is accepted by a deterministic FSA

3. L is accepted by a non-deterministic FSA

(See the course text for the proof.)
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Closure Properties of FSA-accepted Languages

Q: What do we mean by closure?

if we perform some operation on elements of a set, the new ele-
ment still belongs to the set.

Theorem Every regular language L is closed under complemen-
tation, union, intersection, concatenation and the Kleene star op-
eration.

Q: What does this mean?

If L and L0 are regular languages, then so too are L \ L0, L [
L0, L, LL0, L⇤.

Proof of L [ L0.

• Let M be a NFSA that accepts L.

• Let M 0 be a NFSA that accepts L0.

Q: How can we construct M[ that will accept either language?

add a new start state, s with ✏ transitions to the start states of M 0

and M .

Proof of L⇤.

Given M accepting L, how can we build a new NFSA to accept
L⇤?

from each accepting state we make an epsilon transission back
to the start (which is a new start to allow the empty string.
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Regular Languages

Q: How can we prove that a language L is regular?

build a DFSA or a regular expression

Q: How can we prove that a L is not regular?

• Any FSA has a finite number of states, say n.

• Therefore if L is infinite, then L has strings with > n sym-
bols.

• Q: What does this imply about at least one state of the
FSA? we must at some point return to an earlier state,
say qi.

• Repeating this cycle an arbitrary number of times must yield
another string in L.

• Q: What does this mean?
Any string on > n symbols, must have a portion of it that is
just a cycle being repeated some number of times.

• Q: How does this help us?
If we can show for a particular language that no such cycling
substring can exist, then the language cannot be regular
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