Formal Languages
We'll use the English language as a running example.

Definitions. Examples.

e A siring is a finite set of symbols, where
each symbol belongs to an alphabet de-
noted by V.

e The setof all strings that can be constructed
from an alphabet 2 is 2.

e If =,y are two strings of /engths |x| and |y,
then:
— xy or x o y is the concatenation of = and
y, so the length, |zy| = || + |y

— (x)"is the reversal of x

— the kt"-power of z is

k € ifk=20
- logx, ifk>0

— equal, substring, prefix, suffix are de-
fined in the expected ways.

— Note that the language () is notthe same
language as .

73

Operations on Languages

Suppose that L is the English language and that L is the
French language over an alphabet /.

e Complementation: L = J* — L

L is the set of all words

e Union: LiUly={x:x € Liorx € Ly}

Lg U L is the set

e Intersection: LiNLy={zr:x € Liandx € Ly }

Lr N Lris the set

e Concatenation: L; o L is the set of all strings xy such
thatx € Ly and y € Lo
Q: What is an example of a string in Ly o L?

Q: What if Lz or Ly is)? Whatis Ly o Lp?

74

e Kleene star: /*. Also called the Kleene Closure of L and
is the concatenation of zero or more stringsin L.

Recursive Definition
— Base Case: ec L

— Induction Step: If x € L*and y € L then zy € L*

e Language Exponentiation Repeated concatenation of a
language L.

— 1 L* 1oL, ifk>0

e Reversal The language Rev(L) is the language that results
from reversing all strings in L.

Q: How do we define the strings that belong to a /anguage such
as English, French, Java, arithmetic, etc.

Example: For the language of arithmetic, LA

Define ' = {N} U {4+, —,=, (,)} then

N(Q(+4(=" € &
but

NQRH4(=" ¢ LA

75

Regular Expressions

A regular expression over an alphabet)’ consists of
1. Symbols in the alphabet

2. The symbols {-+, (,)," } where 4+ means OR and * means
zero or more times.

Recursive Definition.

Let the set RE of ALL reqular expressions, be the smallest set
such that:

e Basis:),¢,a € RE,Va € X

e Inductive Step: if 2 and S are reqular expressions € RE,
thensoare: (R+S),(RS), R*

Examples: Let ' = {0, 1}:

Regular Expression Corresponding Language
(0+1)"

((0+1)(0+1)")
((0+1)(0+ 1))
e+ 0+ 0(0 + 1)*0

11(0 4 11)*

76

Relating Regular Expressions to Languages

Let L('R) represent the /language constructed by the regular ex-
pression R.

We define L('R) inductively as follows:

Base Case:
o L(D)=10
o L(e) = ¢}

e Foranya € X, L(a) = {a}

Induction Step: If R is a reqgular expression, then by definition
of R,

o R=S5T,or
e R=S5+4+1T,or
o R=5*

where S and T are reqular expressions and by induction, £(S)
and £(7) have been defined.

77

We can define the language denoted by R, ie., £L('R) as follows:
e L((S+T))=
o L((ST)) =
o L(S*)=

Q: Why is this definition important?

Example

Q: What is a regular expression I, to denote the language of
strings consisting of only an even number of a’s?

e.g., aa, aaaa, aaaaaaaa €tC.

Q: What is a reqular expression Rz for the language of strings
consisting of 7 or more triples of b’s? e.g., bbb, bbbbbb, bbbbbbbbb.

Q: What is a regular expression, R 45, for the language of strings
consisting of an even number of a’s sandwiched between 1 or
more friples of 0?

eg., bbbaabbb, or bbbaaaaaabbb

78

Equivalence. We say that two regular expressions i and S are
equivalent if they describe the same language.

In other words, if L(R) = L(S) for two regular expressions R
and S then R = 5.

Examples.

e Are R and S equivalent?

R = a*(ba*ba™)* and S = a*(ba*b)*a”

Q: Why?

o Are R=(a(a+ b)*)and S = (a(a 4+ b))* equivalent?

Regular Expression Equivalences

There exist equivalence axioms for reqular expressions that are
very similar to those for predicate/propositional logic.

Equivalences for Regular Expressions
e Commutativity of union:
e Associativity of union:
e Associativity of concatenation:
o Left distributivity:
e Right distributivity:
e |dentity of Union:
e |dentity of Concatenation:
e Annihilator for concatenation:
e |dempotence of Kleene star:

Theorem (Substitution) /f two substrings R and R’ are equiva-
lent then if R is a substring of S then replacing R by R’ constructs
a new regular expression equivalent to 5.

79

Equivalent Regular Expressions

Q: How can we determine whether two reqgular expressions de-
note the same language?

Examples.

Prove that
(0110+01)(10)* =01(10)*

Proof.

(0110 4+ 01)(10)*

80

Another Example.

Prove that i denotes the /anguage L of all strings that contain
an even number of (s.

R = 1*(01*01%)*

Equivalently,

reL s zxe L(R)

Proof.

o Letx € L(R).

e Thenx €

o Letz = y(zw)* then
e Therefore, y has

e Therefore, w has

e Therefore, = has

e S0, x = y(zw)* has

81

(<)

e Suppose that x is an arbitrary string in L.

= x has an even number of ()s. Denote by 2k for some
k € N.

e How can we rewrite = consisting of (s and 7s?

Let 2 = vy, y1, y2,..., Y, SO

e S0z = yoy1...ys € L(17)(L(01*01%))* = L£(1(01*01%)*).

Q: Can every possible type of string be represented by a regular
expression?

To answer this, we turn to Finite State Machines.

82

String Matching and Finite State Machines
e Given source code (say in Java)

e Find the comments — may need to remove comments for
software transformations

public class QuickSort {
private static long comparisons
private static long exchanges

0;
0;

/***

* Quicksort code from Sedgewick 7.1, 7.2.
***/
public static void quicksort(double[] a) {
shuffle(a); // to guard against worst-case
quicksort(a, 0, a.length - 1);
}
public static void quicksort(double[] a, int left, int right) {
if (right <= left) return;
int i = partition(a, left, right);
quicksort(a, left, i-1);
quicksort(a, i+l, right);

}

private static int partition(double[] a, int left, int right) {
int i = left - 1;
int j = right;
while (true) {

while (less(a[++i], a[right])) // find item on left to swap
; // a[right] acts as sentinel
while (less(a[right], a[--31)) // find item on right to swap
if (j == left) break; // don't go out-of-bounds
if (i >= j) break; // check if pointers cross
exch(a, i, j); // swap two elements into place
}
exch(a, i, right); // swap with partition element

return i;

83

Q. What patterns are we looking for?

Q. What do we know if we see a / followed by a

*

/

text

Q. What do we know if we see /* followed by a

*

/

text

Let’s represent these ideas with a diagram.

84

Deterministic Finite State Automata
(DFSA or DFA)

A DFA consists of:
¢ Q.
o J.
e sE Q.

o FC Q.

Comment Example.
o Q =
[] 2 =

® S =

Example cont...

d(state, input) | / * text \nl
start
/
//
/*
accept

Q: What if we want to know which state the input “**//” ends at if
we begin at start?

Two Options.
1. Compute:

2. Define §*.

Formal definition of 6*(¢, x) (reading left to right):

1f x=c¢€

* _ q
5(q’$)_{5(5*(q,z),a) if r=za,a€ X,z l*

86

Regular Expressions and DFA

e The set of strings accepted by an automaton defines a lan-
gauge.

e For automaton M the language M accepts is L(M).

e Given regular expression R, find M such that
L(R)=L(M).

Examples.
Let regular expression Ry = (1 4+ 00)*.
Q. Which strings belong to £(R;)?

Q: What is a DFA M; suchthat L(M1) = L(R1)?

87

DFSA Conventions

e Strings ending at a final state are accepted (if we want to
accept/reject).

e Drop dead states.

e Group elements that go from and to the same states.

Examples cont.
Let reqular expression R, = 1(1 4 (01))*.
Q. Which strings belong to £(R2)?

Q: What is a DFA M5 such that £(M2) = L(R2)?

88

6: 6(qo0,0)= (qo0,1) = 6(q1,0) =
5(q17 1) — 5(q2a O) — 5(q27 1) —

0(d1,00r 1) =

Q: How do we know that our machine M is correct?

We can show this by proving that 6*(qo,z) only accepts those
strings in L(R>).

Q: What might be a good way to do this?

Proving a DFA is Correct

Q: What should we do induction on?

Q: What should our S(x) include?

89

Proof that £L(M>) = L(R>):

0

&

0.1

L(Ry) = {x € {0,1} | every 0 is sandwiched between 1s }

qo

() 6@, w) =1

d1
RTP S(x) forall z € J*.

Base Case. x = ¢:

IS. Assume that S(y) holds for y € X* and consider x = ya
where a € .

Two cases: Case 1. a = 1. and Case 2: a = 0.

90

Case 1. a = 1. Then 6*(qo,yl) =

of &*.
6(qo,1) if
« . 60(q1,1) if
Y (QO7y1) — 5(q2’1) if
5(di,1) if

Q. Why can we write this?

We can rewrite in terms of x to get:

(6(qo, 1)
5(q171)

5*(CIO>?J1) = < 5((]2, 1)

\ 5(d171)

from the definition of 6 (or the diagram):

6" (qo,yl) =

by definition

91

Case 2: a = 0 Then 6*(qo,y0) = by definition
of 6*.

5(qo,0) ifyisempty,y € L(R3)
__J 6(q1,0) ifall Osin y sandwiched by 1s
) 0(g2,0) ifyendsinO

0(d1,0) if y has a0 not preceded by a 1

because = ends with a 0,

5(go,0) if 2 has a O that is not preceded by a 1, x € L(R2)
) 6(q1,0) ifzxendsina0,sox & L(R2)
5(g>,0) ifzendsin00,s0x & L(R>)
5(d1,0) ifzhasaOnotprecededbyal,,sox & L(R2)

from the state diagram and definition of §

di1 if z has a O that is not precededby a 1, z € L(R52)
I q> if x ends in a O but all other Os sandwiched by 1s
d1 if x hasaOnot precededbya l, x & L(R2)
d1 if z hasaOnot precededbyal,,z & L(R>)

Therefore, our DFA satisfies the invariant S(x).

92

Non-Deterministic Finite State Automata (NFA or
NFSA)

Q: What does deterministic mean?

NFSA. A non-deterministic finite state automata (NFSA) extends
DFSA by allowing choice at each state.

Differences between DFSA and NFSA:;

e NFSA. Given a state ¢; and an input = there can be more
than one possible transition, i.e,

6"(q,x) = {set of qi}

e NFSA. Given state ¢;, we can have an ¢ transition.

6*(qi, €) = g

This means we can spontaneously jump from g; to g;.

Q: How do we know if a siring is accepted by an NFSA?

93

Examples of NFSA

Consider the strings that are represented by the regular expres-
sion: (010 4+ 01)*

NFSA:

DFSA:

Formally. An NFSA, is a machine M = (Q),), 6, s, ') where
e eachof), 2, s, I are as for a DFSA.
e §:Qx (XU{e}) — P(Q)

o 1 Q x1"—=P(Q).

94

Limitations of DFSA and NFSA
Q: Can every set of strings be recognizedby a DFSA? an NFSA?

Q: How much more powerfulis an NFSA over a DFSA?

Detailed answers.

e Only strings representable by regular expressions can be
recognized by an NFSA or DFSA.

e There exists an algorithm to convert between deterministic
and non-deterministic machines.

Theorem. [If L is a reqular language then the following are all
equivalent:

1. L is denoted by a reqular expression
2. L is accepted by a deterministic FSA
3. L is accepted by a non-deterministic FSA

(See the course text for the proof.)

95

Closure Properties of FSA-accepted Languages

Q: What do we mean by closure?

Theorem Every regularlanguage L is closed under complemen-
tation, union, intersection, concatenation and the Kleene star op-
eration.

Q: What does this mean?

Proof of L U L.
e Let M be a NFSA that accepts L.
e Let V' be a NFSA that accepts I/.

Q: How can we construct M, that will accept either language?

Proof of L.*.

Given M accepting L, how can we build a new NFSA to accept
L*?

96

Regular Languages

Q: How can we prove that a language L is reqular?

Q: How can we prove that a £ is not regular?
e Any FSA has a finite number of states, say n.

e Therefore if L is infinite, then L has strings with > n sym-
bols.

e Q: What does this imply about at least one state of the
FSA?

e Repeating this cycle an arbitrary number of times must yield
another string in L.

e Q: What does this mean?

e Q: How does this help us?

97

