
Formal Languages

We’ll use the English language as a running example.

Definitions.

• A string is a finite set of symbols, where
each symbol belongs to an alphabet de-
noted by Σ .

• The set of all strings that can be constructed
from an alphabet Σ is Σ ∗.

• If x, y are two strings of lengths |x| and |y|,
then:

– xy or x ◦ y is the concatenation of x and
y , so the length, |xy| = |x|+ |y|

– (x)R is the reversal of x

– the kth-power of x is

xk =

{
ε if k = 0
xk−1 ◦ x, if k > 0

– equal, substring, prefix, suffix are de-
fined in the expected ways.

– Note that the language ∅ is not the same
language as ε.

Examples.
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Operations on Languages

Suppose that LE is the English language and that LF is the
French language over an alphabet Σ .

• Complementation: L = Σ ∗ − L

LE is the set of all words that do NOT belong in the
english dictionary .

• Union: L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2}

LE ∪ LF is the set of all english and french words.

• Intersection: L1 ∩ L2 = {x : x ∈ L1 and x ∈ L2 }

LE ∩ LF is the set of all words that belong to both english
and french...eg., journal

• Concatenation: L1 ◦ L2 is the set of all strings xy such
that x ∈ L1 and y ∈ L2

Q: What is an example of a string in LE ◦ LF?

goodnuit

Q: What if LE or LF is ∅? What is LE ◦ LF?

∅
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• Kleene star: L∗. Also called the Kleene Closure of L and
is the concatenation of zero or more strings in L.

Recursive Definition

– Base Case: ε ∈ L

– Induction Step: If x ∈ L∗ and y ∈ L then xy ∈ L∗

• Language Exponentiation Repeated concatenation of a
language L.

Lk =

{
{ε} if k = 0
Lk−1 ◦ L, if k > 0

• Reversal The language Rev(L) is the language that results
from reversing all strings in L.

Q: How do we define the strings that belong to a language such
as English, French, Java, arithmetic, etc.

Example: For the language of arithmetic, LA:

Define Σ = {N} ∪ {+,−,=, (, )} then

“)((2(+4(= ” ∈ Σ ∗

but
“)((2(+4(= ” (∈ LA.
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Regular Expressions

A regular expression over an alphabet Σ consists of

1. Symbols in the alphabet

2. The symbols {+, (, ),∗ } where + means OR and ∗ means
zero or more times.

Recursive Definition.

Let the set RE of ALL regular expressions, be the smallest set
such that:

• Basis: ∅, ε, a ∈ RE,∀a ∈ Σ

• Inductive Step: if R and S are regular expressions ∈ RE ,
then so are: (R+ S), (RS), R∗

Examples: Let Σ = {0,1}:

Regular Expression Corresponding Language
(0 + 1)∗ Σ

((0 + 1)(0 + 1)∗) all non-empty strings in Σ ∗

((0 + 1)(0 + 1))∗ all even length strings

ε+0+ 0(0+ 1)∗0 all strings that don’t begin/end with 1

11(0 + 11)∗ all strings with 1’s in pairs
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Relating Regular Expressions to Languages

Let L(R) represent the language constructed by the regular ex-
pression R.

We define L(R) inductively as follows:

Base Case:

• L(∅) = ∅

• L(ε) = {ε}

• For any a ∈ Σ , L(a) = {a}

Induction Step: If R is a regular expression, then by definition
of R,

• R = ST , or

• R = S + T , or

• R = S∗

where S and T are regular expressions and by induction, L(S)
and L(T ) have been defined.
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We can define the language denoted by R, ie., L(R) as follows:

• L((S + T )) = L(S) union L(T )

• L((ST )) = L(S) cat L(T )

• L(S∗) = (L(S))∗

Q: Why is this definition important?

We can construct the language defined by a regular expression
by building the set from smaller regular expressions.

Example

Q: What is a regular expression RA to denote the language of
strings consisting of only an even number of a’s?

e.g., aa, aaaa, aaaaaaaa etc.

(aa)∗

Q: What is a regular expression RB for the language of strings
consisting of 1 or more triples of b’s? e.g., bbb, bbbbbb, bbbbbbbbb.

bbb(bbb)∗

Q: What is a regular expression, RAB, for the language of strings
consisting of an even number of a’s sandwiched between 1 or
more triples of b?

eg., bbbaabbb, or bbbaaaaaabbb

RBRARB = bbb(bbb)∗(aa)∗bbb(bbb)∗

78



Equivalence. We say that two regular expressions R and S are
equivalent if they describe the same language.

In other words, if L(R) = L(S) for two regular expressions R
and S then R = S .

Examples.

• Are R and S equivalent?

R = a∗(ba∗ba∗)∗ and S = a∗(ba∗b)∗a∗

no.

Q: Why?

bbaabb is in R but not in S.

• Are R = (a(a + b)∗) and S = (a(a + b))∗ equivalent?

NO. R denotes strings all nonempty strings starting with a
and S denotes all strings that can be split into pairs of sym-
bols such that the first symbol is always an a



Regular Expression Equivalences

There exist equivalence axioms for regular expressions that are
very similar to those for predicate/propositional logic.

Equivalences for Regular Expressions

• Commutativity of union: (R+S) = (S+R)

• Associativity of union: (R+S) + T = R+(S+T)

• Associativity of concatenation: (RS)T = R(ST)

• Left distributivity: R(S+T) = RS + RT

• Right distributivity: (S+T)R = SR + TR

• Identity of Union: R + ∅ = R

• Identity of Concatenation: Rε

• Annihilator for concatenation: R∅ = ∅ = ∅R

• Idempotence of Kleene star: R∗∗ = R∗

Theorem (Substitution) If two substrings R and R′ are equiva-
lent then if R is a substring of S then replacing R by R′ constructs
a new regular expression equivalent to S .
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Equivalent Regular Expressions

Q: How can we determine whether two regular expressions de-
note the same language?

To show equivalency, one method is to use the previous axioms
to construct a proof.

To show that two regular expressions are NOT equivalent we only
need to find a string that belongs to the language denoted by one
expression but not the other.

Examples.

Prove that
(0110+ 01)(10)∗ ≡ 01(10)∗

Proof.

(0110+ 01)(10)∗ ≡ (0110+ 01ε)(10)∗substitution, 10 by 10 ε.

≡ (01(10+ ε))(10)∗ by distributivity
≡ 01((10 + ε)(10)∗) assoc. of concat.
≡ 01((ε+10)(10)∗) commutativity of union
≡ 01(ε10∗ +10(10)∗) right distributive
≡ 01(10∗ +10(10)∗) substitution, 10ε by 10
≡ 01(10)∗ since L(10∗) includes every string

∈L(10(10)∗)
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Another Example.

Prove that R denotes the language L of all strings that contain
an even number of 0s.

R = 1∗(01∗01∗)∗

Equivalently,

x ∈ L ⇔ x ∈ L(R)

Proof.

(⇒)

• Let x ∈ L(R).

• Then x ∈L(1∗(01∗01∗)∗) = L(1∗)L(01∗)L(01∗)

• Let x = y(zw)∗ then y ∈ L(1∗), z ∈ L(01∗), w ∈ L(01∗)

• Therefore, y has zero 0s

• Therefore, w has 1 zero

• Therefore, z has 1 zero

• So, x = y(zw)∗ has zero 0s plus a multiple of 2 zeros.
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(⇐)

• Suppose that x is an arbitrary string in L.

• ⇒ x has an even number of 0s. Denote by 2k for some
k ∈ N.

• How can we rewrite x consisting of 0s and 1s? x = 1 . . .1 0 1 . . .1 0 1 . . .1 0 1 . . .1 0....
for 2k 0’s.

• Let x = y0 , y1 , y2 , . . . , yk , so y0 = 1n1 ∈ L(1∗)
yi = 0 1 . . .1 0 1 . . .1 = 01ni01mi ∈ L(01∗01∗) ( from
the 2i− 1st 0 to just before the (2i+1)st 0 (if it exists))
yi ∈ L(01∗01∗),1 ≤ i ≤ k

• So x = y0y1 . . . yk ∈ L(1∗)(L(01∗01∗))∗ = L(1(01∗01∗)∗).

Q: Can every possible type of string be represented by a regular
expression?

To answer this, we turn to Finite State Machines.
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String Matching and Finite State Machines

• Given source code (say in Java)

• Find the comments – may need to remove comments for
software transformations

QuickSort.java

Below is the syntax highlighted version of QuickSort.java from §4.2 Sorting and Searching.

/*************************************************************************

 *  Compilation:  javac QuickSort.java

 *  Execution:    java QuickSort N

 *

 *  Generate N random real numbers between 0 and 1 and quicksort them.

 *

 *  On average, this quicksort algorithm runs in time proportional to

 *  N log N, independent of the input distribution. The algorithm

 *  guards against the worst-case by randomly shuffling the elements

 *  before sorting. In addition, it uses Sedgewick's partitioning

 *  method which stops on equal keys. This protects against cases

 *  that make many textbook implementations, even randomized ones,

 *  go quadratic (e.g., all keys are the same).

 *

 *************************************************************************/

public class QuickSort {

    private static long comparisons = 0;

    private static long exchanges   = 0;

   /***********************************************************************

    *  Quicksort code from Sedgewick 7.1, 7.2.

    ***********************************************************************/

    public static void quicksort(double[] a) {

        shuffle(a);                        // to guard against worst-case

        quicksort(a, 0, a.length - 1);

    }

    public static void quicksort(double[] a, int left, int right) {

        if (right <= left) return;

        int i = partition(a, left, right);

        quicksort(a, left, i-1);

        quicksort(a, i+1, right);

    }

    private static int partition(double[] a, int left, int right) {

        int i = left - 1;

        int j = right;

        while (true) {

            while (less(a[++i], a[right]))      // find item on left to swap

                ;                               // a[right] acts as sentinel

            while (less(a[right], a[--j]))      // find item on right to swap

                if (j == left) break;           // don't go out-of-bounds

            if (i >= j) break;                  // check if pointers cross

            exch(a, i, j);                      // swap two elements into place

        }

        exch(a, i, right);                      // swap with partition element

        return i;

    }
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Q. What patterns are we looking for?

// text \nl or /∗ text ∗/

Q. What do we know if we see a / followed by a

∗ we are in a comment

/ we are in a comment

text not in comment

Q. What do we know if we see /∗ followed by a

∗ might be at the end of a comment if next char is /

/ not end of comment

text in the comment

Let’s represent these ideas with a diagram.
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Deterministic Finite State Automata
(DFSA or DFA)

A DFA consists of:

• Q. a set of states (this set is finite)

• Σ . an alphabet that strings are composed from

• s ∈ Q. a start state–where you feed in the string

• F ⊆ Q. a set of accepting/final states

• δ. Q × Σ → Q this is the transition function, means that
you pass it the current state and the input and it tells you
which state to go to.

Comment Example.

• Q = {start, /, //, /*, *, accept }

• Σ = {text, /, \nl, *}

• s = start

• F = accept

• δ: Q×Σ → Q
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Example cont...

δ(state, input) / * text \nl
start

/
//
/*

accept

Q: What if we want to know which state the input “**//” ends at if
we begin at start?

Two Options.

1. Compute: δ(δ(δ(δ(start, *),*), /),/).

2. Define δ∗. δ∗ takes a string and returns the final state after
processing the entire string.
Then, δ(δ(δ(δ(start, *),*), /),/)= δ∗(start,**//) = //

Formal definition of δ∗(q, x) (reading left to right):

δ∗(q, x) =

{
q if x = ε

δ(δ∗(q, z), a) if x = za, a ∈ Σ , z ∈ Σ ∗
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Regular Expressions and DFA

• The set of strings accepted by an automaton defines a lan-
gauge.

• For automaton M the language M accepts is L(M ).

• Given regular expression R, find M such that

L(R) = L(M).

Examples.

Let regular expression R1 = (1+ 00)∗.

Q. Which strings belong to L(R1)?

L(R1) = {x ∈ {0,1} | all 0’s are in pairs, i.e., 00}

Q: What is a DFA M1 such that L(M1) = L(R1)?
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DFSA Conventions

• Strings ending at a final state are accepted (if we want to
accept/reject).

• Drop dead states.

• Group elements that go from and to the same states.

Examples cont.

Let regular expression R2 = 1(1 + (01))∗.

Q. Which strings belong to L(R2)?

L(R2) = {x ∈ {0,1} | every 0 is sandwiched between 1s.}

Q: What is a DFA M2 such that L(M2) = L(R2)?
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δ : δ(q0,0) = d1 δ(q0,1) = q1 δ(q1,0) = q2

δ(q1,1) = q1 δ(q2,0) = d1 δ(q2,1) = q1

δ(d1,0 or 1) = d1

Q: How do we know that our machine M is correct?

We can show this by proving that δ∗(q0, x) only accepts those
strings in L(R2).

Q: What might be a good way to do this? INDUCTION!

Proving a DFA is Correct

Q: What should we do induction on?

either the length of the string, or on the structure of the string...same
thing

Q: What should our S(x) include?

it should say something about δ∗ and the types of strings x that
are accepted.
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