Non-Deterministic Finite State Automata (NFA or NFSA)

Q: What does deterministic mean?

the path is fixed > no choice

NFSA. A non-deterministic finite state automata (NFSA) extends DFSA by allowing choice at each state.

Differences between *DFSA* and *NFSA*:

• **NFSA.** Given a state q_i and an input x there can be *more* than *one* possible *transition*, i.e,

$$\delta^*(q,x) = \{ set \ of \ q_i \}$$

• **NFSA.** Given state q_i , we can have an ϵ *transition*.

$$\delta^*(q_i,\epsilon) = q_i$$

This means we can spontaneously *jump* from q_i to q_j .

Q: How do we know if a *string* is *accepted* by an *NFSA*?

Check all possible paths and as long as one is accepted the string is accepted.

Examples of NFSA

Consider the strings that are *represented* by the *regular expression*: $(010+01)^*$

NFSA:

DFSA:

Formally. An *NFSA*, is a machine $M = (Q, \Sigma, \delta, s, F)$ where

- each of Q, Σ, s, F are as for a *DFSA*.
- $\delta: Q \times (\Sigma \cup {\epsilon}) \to \mathcal{P}(Q)$ ($\mathcal{P}(Q)$ is a *set* of states).
- $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$.

Limitations of DFSA and NFSA

Q: Can *every* set of strings be *recognized* by a *DFSA*? an *NFSA*?

No.

Q: How much more powerful is an NFSA over a DFSA?

Not at all.

Detailed answers.

- Only strings representable by regular expressions can be recognized by an NFSA or DFSA.
- There exists an *algorithm* to *convert* between *deterministic* and *non-deterministic* machines.

Theorem. If L is a regular language then the following are all equivalent:

- 1. L is denoted by a *regular expression*
- 2. *L* is accepted by a *deterministic FSA*
- 3. L is accepted by a non-deterministic FSA

(See the course text for the proof.)

Closure Properties of FSA-accepted Languages

Q: What do we mean by closure? If we perform an operation on members of a set, the new elements belong to the set. Theorem Every regular language L is closed under complementation, union, intersection, concatenation and the Kleene star operation.
Q: What does this mean? if L, L' are regular then so are $\overline{L}, L \cap L', L \cup L'$ and $L \cup L'$. Proof of $L \cup L'$.
• Let M be a NFSA that accepts L .
• Let M' be a <i>NFSA</i> that accepts L' .
Q: How can we construct M_{\cup} that will accept either language? add a new start state with \mathcal{E} transition to the start states of M , M . Proof of L^* .
Given M accepting L , how can we build a new $NFSA$ to accept L^* ? from each accepting state add an E transition to the start start and
create a new start state to go accept the Esting.

Regular Languages

Q: How can we prove that a *language* L is *regular*?

Q: How can we prove that a \mathcal{L} is *not* regular?

- Any FSA has a finite number of states, say n.
- Therefore if L is *infinite*, then L has strings with > n symbols.
- Q: What does this imply about at least one state of the FSA? IS visited more than once which creates a cycle.
- Repeating this cycle an arbitrary number of times must yield another string in L.
- Q: What does this mean?

 On a string with In symbols, there must be a postion that is just a cycle

 Q: How does this help us? being repeated.

 if we can create a string that is accepted but not in the language we have a contradiction.

 97