
CSCB20 Worksheet – database schema and relational $algebra^1$

1 Database Schema Diagrams

We will use the university sample relational schema defined in lectures. The following schema diagram illustrates all the relations in the database. Each relation has primary keys underlined. Draw arrows to show all *foreign key* constraints.

¹Diagrams and examples taken from Database System Concepts 6th Edition

2 Relational Algebra

We use relational algebra to specify *queries* on a database. This is the formal mathematical notational. Later we will see how this translates into SQL.

Symbol (Name)	Example of Use
σ	$\sigma_{salary>=85000}(instructor)$
(Selection)	Return rows of the input relation that satisfy
	the predicate.
П	$\Pi_{ID,salary}(instructor)$
(Projection)	Output specified attributes from all rows of
	the input relation. Remove duplicate tuples
	from the output.
\bowtie	$instructor \bowtie department$
(Natural join)	Output pairs of rows from the two input rela-
	tions that have the same value on all attributes
	that have the same name.
×	$instructor \times department$
(Cartesian product)	Output all pairs of rows from the two input
	relations (regardless of whether or not they
	have the same values on common attributes)
U	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Union)	Output the union of tuples from the two input
	relations.

Summary of Relational Algebra

2.1 Lets practice...

The university schema and relations are at the end of this handout.

- 1. What is the result of $\sigma_{s_id=ID}$ (student × advisor)?
- 2. Explain what each of the following expressions do:
 - (a) $\sigma_{year \geq 2009}$ (takes) \bowtie student
 - (b) $\sigma_{year \ge 2009}$ (takes \bowtie student)
 - (c) $\Pi_{\text{ID, name, course_id}}(\text{student} \bowtie \text{takes})$
- 3. Suppose we have the following relational database:

employee (person_name, street, city)
works(person_name, company_name, salary)
company (company_name, city)

- (a) Find the names of all employees who live in city 'Miami'.
- (b) Find the names of all employees whose salary is greater than \$100,000.

- (c) Find the names of all employees who line in 'Miami' and whose salary is greater than \$100,000.
- (d) Find the names of all employees who work for ?First Bank Corporation?.
- (e) Find the names and cities of residence of all employees who work for ?First Bank Corporation?.
- (f) Find the names, street address, and cities of residence of all employees who work for ?First Bank Corporation? and earn more than \$10,000.
- 4. Suppose we have the following relational database:

branch(branch_name, branch_city, assets)
customer(customer_name, customer_street, custromer_city)
loan(loan_number, branch_name, amount)
borrower(customer_name, loan_number)
account(account_number, branch_name, balance)
depositor(custromer_name, account_number)

- (a) What are appropriate primary keys?
- (b) Given your choice of primary keys, identify appropriate foreign keys.
- (c) Find the names of all branches located in 'Chicago'.
- (d) Find the names of all borrowers who have a loan in branch 'Down-town'.
- (e) Find all loan numbers with a loan value greater than \$10, 000.
- (f) Find the names of all depositors who have an account with a value greater than \$6000.

3 University Relations

Relations and their schemas:

classroom(building, room_number, capacity) department(dept_name, building, budget) course(course_id, title, dept_name, credits) instructor(ID, name, dept_name, salary) section(course_id, sec_id, semester, year, building, room_number, time_slot_id) teaches(ID, course_id, sec_id, semester, year) student(ID, name, dept_name, tot_cred) takes(ID, course_id, sec_id, semester, year, grade) advisor(s_ID, i_ID) time_slot(time_slot_id, day, start_time, end_time) prereq(course_id, prereq_id)

ID	course_id	sec_id	semester	year		
10101	CS-101	1	Fall	2009		
10101	CS-315	1	Spring	2010	ID	name
10101	CS-347	1	Fall	2009	ID	пите
12121	FIN-201	1	Spring	2010	10101	Srinivasan
15151	MU-199	1	Spring	2010	12121	Wu
22222	PHY-101	1	Fall	2009	15151	Mozart
32343	HIS-351	1	Spring	2010	22222	Einstein
45565	CS-101	1	Spring	2010	32343	El Said
45565	CS-319	1	Spring	2010	33456	Gold
76766	BIO-101	1	Summer	2009	45565	Katz
76766	BIO-301	1	Summer	2010	58583	Califieri
83821	CS-190	1	Spring	2009	76543	Singh
83821	CS-190	2	Spring	2009	76766	Crick
83821	CS-319	2	Spring	2010	83821	Brandt
98345	EE-181	1	Spring	2009	98345	Kim

Teaches

Instructor

dept_name

Comp. Sci.

Physics History Physics Comp. Sci. History

Finance

Biology Comp. Sci. Elec. Eng.

Finance

Music

salary

65000

90000

40000

80000

72000 92000 80000

course_id	sec_id	semester	year	building	room_number	time_slot_id		
BIO-101	1	Summer	2009	Painter	514	В		
BIO-301	1	Summer	2010	Painter	514	А		
CS-101	1	Fall	2009	Packard	101	Н		
CS-101	1	Spring	2010	Packard	101	F		
CS-190	1	Spring	2009	Taylor	3128	Е		
CS-190	2	Spring	2009	Taylor	3128	А		
CS-315	1	Spring	2010	Watson	120	D	. 1	• 1
CS-319	1	Spring	2010	Watson	100	В	course_id	prereq_id
CS-319	2	Spring	2010	Taylor	3128	С	BIO-301	BIO-101
CS-347	1	Fall	2009	Taylor	3128	А	BIO-399	BIO-101
EE-181	1	Spring	2009	Taylor	3128	С	CS-190	CS-101
FIN-201	1	Spring	2010	Packard	101	В	CS-315	CS-101
HIS-351	1	Spring	2010	Painter	514	С	CS-319	CS-101
MU-199	1	Spring	2010	Packard	101	D	CS-347	CS-101
PHY-101	1	Fall	2009	Watson	100	А	EE-181	PHY-101

Section

Prereq

[course_id	title	dept_name	credits	
Γ		BIO-101	Intro. to Biology	Biology	4	
		BIO-301	BIO-301 Genetics		4	
			BIO-399	Computational Biology	Biology	3
			CS-101	Intro. to Computer Science	Comp. Sci.	4
dant wants	huilding	hudaat	CS-190	Game Design	Comp. Sci.	4
dept_name	building	budget	CS-315	Robotics	Comp. Sci.	3
Biology	Watson	90000	CS-319	Image Processing	Comp. Sci.	3
Comp. Sci.	Taylor	100000	CS-347	Database System Concepts	Comp. Sci.	3
Elec. Eng.	Taylor	85000	EE-181	Intro. to Digital Systems	Elec. Eng.	3
Finance	Painter	120000	FIN-201	Investment Banking	Finance	3
History	Painter	50000	HIS-351	World History	History	3
Music	Packard	80000	MU-199	Music Video Production	Music	3
Physics	Watson	70000	PHY-101	Physical Principles	Physics	4

Department

Course