CSCB20 WORKSHEET — SQL AND MYSQL

1 Logging in to MySQL on cmslab

Open a PuTTY window (windows) or terminal (Mac) and type:
ssh utorid@cmslab.utsc.utoronto.ca

Enter your password.

Start MySQL by typing
mysql -u Utorid -pUtorid

You have your own database with name the same as your utorid. You can see what databases you
have by typing:

show databases;

All commands in MySQL end in a ;.

To use a particular database write the command:
use databaseName;

Where databaseName is your utorid.

You can now create tables and start making queries. You will set up some tables on your mathlab
account in the tutorial.

To check which tables belong in your database, type:
show tables;
To see what columns belong to table table_name, type:

show columns from table_name;

2 Performing Simply Queries
We will use the University database tables for an example.

Selecting Columns:

e Select the name of each instructor from the instructor table.
SELECT name FROM instructor;

e Select the name and department for each instructor.
SELECT name, dept_name FROM instructor;

e Select the department for each instructor.
SELECT dept_name FROM instructor;

Was this the answer we wanted? Let’s fix it... SELECT DISTINCT dept_name FROM
instructor;

e Maybe we would like to see the instructor names and departments ordered by depart-
ment name.

SELECT name, dept_name FROM instructor ORDER BY dept_name;

e Select all columns from the course relation.
SELECT * FROM course;

Selecting Columns With Conditions

e Select the names of the instructors in the ‘Comp. Sci’ department.

SELECT name FROM instructor WHERE dept_name = ‘Comp. Sci’;

e Select the names and salaries of the instructors with salary at least $65,000 ordered by
increasing salary.

SELECT name, salary FROM instructor WHERE salary >= 65000 ORDER BY salary;
How about in decreasing salary order?

SELECT name, salary FROM instructor WHERE salary >= 65000 ORDER BY salary
DESC;

SELECT name, salary FROM instructor WHERE salary >= 65000 ORDER BY -salary;

Key words are ORDER BY ... [ASC or DESC].

e Select the course_id of courses offered in the Spring of 2010.

SELECT course_id FROM section WHERE semester = ’Spring’ and year = ’2010’;

Selecting From Multiple Tables — Natural Join:

e Select all columns from the natural join of instructor and teaches.

SELECT * FROM instructor NATURAL JOIN teaches;

e Select the name, course_id and course title of all courses taught in 2010 ordered by
course_id.

SELECT name, course_id, title FROM instructor NATURAL JOIN teaches NATURAL
JOIN course WHERE year = ’2010° ORDER BY course_id;

Can we use a NATURAL JOIN to find all those departments that share the same building?
NO...

Selecting from Multiple Tables - Inner Join:

e Select all departments and their buildings that share a building.
SELECT A.dept_name, A.building FROM department A INNER JOIN department B
ON A.building = B. building
AND A.dept_name != B.dept_name
ORDER BY building;

e Select the instructor_id of instructors who teach more than one course at the same time.

SELECT A.id FROM teaches A INNER JOIN teaches B
ON A.semester = B.semester

AND A.year = B.year

AND A.course_ id != B.course_id

AND A.id = B.id;

Something isn’t quite correct...missing id 83821...:

SELECT DISTINCT A.id FROM teaches A INNER JOIN teaches B
ON A.semester = B.semester

AND A.year = B.year

AND (A.course_ id != B.course_id OR A.sec_id != B.sec_id)
AND A.id = B.id;

e Select the name and course id of all instructors that teach more than one course at a time.

SELECT DISTINCT name, A.course_id FROM teaches A INNER JOIN teaches B INNER
JOIN instructor

ON A.semester = B.semester AND

A.year = B.year AND

(A.course_id !'= B.course_id OR A.sec_id !'= B.sec_id) AND

A.id = B.id AND

A.id = instructor.id;

Is your head starting to spin?

Q. What is the difference between SELECT * FROM A JOIN B ON Conditions and SELECT *
FROM A JOIN B WHERE Conditions?

A. ON is used to restrict the join of the tables reducing the size of the table whose rows can
then be pruned using WHERE. If we only use WHERE conditions then the JOIN is just a cartesian
product that makes a huge table that then has to be pruned using where conditions - very inefficient.

2.1 Using Aggregate Functions

SQL has aggregate functions AVG, SUM, COUNT, MIN, MAX which can be applied to columns in the
select statement.

Selecting Columns with Aggregate Function:

e Select the average salary of all instructors.
SELECT AVG(salary) FROM instructor;

Notice that the column header shows the aggregate function. Perhaps we would rather
name this title ‘Average Salary’. We can do this with the AS clause.

SELECT AVG(salary) AS ‘Average Salary’ FROM instructor;

e Select the average salary of all instructors in the computer science department.
SELECT AVG(salary) AS ‘Average Salary’ FROM instructor WHERE dept._name = ‘Comp.
Sci.’;

e Select the department and the departments average salary.
SELECT dept_name, AVG(salary) AS ‘Average Salary’ FROM instructor GROUP BY
dept_name;

GROUP BY groups the rows according to the attribute specified and then any aggregate
functions are applied to each group.

e Find the total number of instructors who teach a course in the Spring 2010 semester.
SELECT COUNT(id) FROM teaches WHERE semester=’Spring’ AND year=2010;

This gives us the wrong answer...want DISTINCT instructors.
SELECT COUNT(DISTINCT id) FROM teaches WHERE semester=’Spring’ AND year=2010;

Use DISTINCT whenever you do not want the duplicates to be included. With the AVG
function we want to include all duplicates, with COUNT sometimes we don’t.

e Select the department name and average salary for instructors for each department. In-
clude only those departments whose salaries are greater than $42000.

SELECT dept_name, AVG(salary) AS avg salary FROM instructor GROUP BY dept_name
HAVING AVG (salary) > 42000;

The HAVING cause is a condition that applies to groups rather than tuples. The HAV-
ING clause is applied after the groups have been formed.

Q. In what order are the SQL commands applied to a relation to create the smaller relation?

1. FROM

2. The predicate in the WHERE clause (if present) is applied to tuples satisfying the
FROM clause.

3. Tuples satisfying the WHERE predicate are then placed into groups by the GROUP
BY clause (if present).

4. The HAVING clause (if present) is applied to each group. Groups not satisfying the
HAVING clause are removed.

5. The SELECT clause is applied to the remaining groups, applying aggregate functions
to get the resulting tuple for each group.

e For each course section offered in 2009, find the average total credits (tot_cred) of all
students enrolled in the section, if the section had at least 2 students.

SELECT course_id, semester, year, sec_id, AVG(tot_cred) FROM takes NATURAL

JOIN student WHERE year = 2009 GROUP BY course_id, semester, year, sec_id HAVING
COUNT(ID) >= 2;

Find all the courses taught in the both the Fall 2009 and Spring 2010 semesters.

SELECT course_id FROM section WHERE semester=’Spring’ AND year=’2010’° AND
course_id IN (SELECT course_id FROM section WHERE semester=’Fall’ AND year=’2009’);
Find all the courses taught in the Fall 2009 but not in Spring 2010 semesters.

SELECT course_id FROM section WHERE semester=’Spring’ AND year=’2010’ AND
course_id NOT IN (SELECT course_id FROM section WHERE semester=’Fall’ AND year=’2009’)

IN or NOT IN can be use to check if an attribute belongs to a tuple. For example:

Find the names of the instructors whose names are neither 'Mozart’ nor ’Einstein’.
SELECT name FROM instructor WHERE name NOT IN (’Mozart’, ’Einstein’);

We can also check whether a tuple of attributes belongs in a relation using IN or NOT
IN.

Find the total number of distinct students who have taken course sections taught by the
instructor with ID 10101.

SELECT COUNT (DISTINCT ID) FROM takes WHERE

(course_id, sec_id, semester, year) IN (SELECT course_id, sec_id, semester,
year FROM teaches WHERE teaches.ID = 10101);

Find all the students whose names contain ”"an” in them.

SELECT name FROM student WHERE
name LIKE ‘%an’%’;

Find all the students whose names are 4 characters long.

SELECT name FROM student WHERE
name LIKE ‘_ _ _ _’;

Use the LIKE or NOT LIKE condition to search for strings that match. The % matches
anything and the _ matches exactly one character.

e We know that we can SELECT ... FROM any relation. This means that the FROM
clause can be the result of a SELECT statement itself.

Find the average instructors? salaries of those departments where the average salary is
greater than $42,000 (without using a HAVING clause.

Can think of this as first, lets get a relation containing the departmental average salaries
and then lets select from it.

SELECT dept_name, avg_salary

FROM (SELECT dept_name, AVG(salary) AS avg.salary FROM instructor GROUP BY
dept_name) AS T

WHERE T.avg_salary > 42000;

3 University Relations

Relations and their schemas:

classroom(building, room_number, capacity)
department(dept-name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)

section(course.id, sec_id, semester, year, building, room_number, time_slot_id)

teaches(ID, course.id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)

takes(ID, course_id, sec_id

advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

, semester, year, grade)

‘ ID ‘ course_id ‘ sec_id | semester ‘ year |
10101 | CS-101 1 Fall 2009
10101 | CS-315 1 Sprin; 2010
10101 | CS-347 1 [Ean | 2000 | [[Tname R
12121 | FIN-201 1 Spring 2010 10101 | Srinivasan | Comp. Sci. | 65000
15151 | MU-199 1 Spring 2010 12121 | Wu Finance 90000
22222 | PHY-101 1 Fall 2009 15151 | Mozart Music 40000
32343 | HIS-351 1 Spring 2010 22222 | Einstein Physics 95000
45565 | CS-101 1 Spring 2010 | | 32343 | ElSaid History 60000
45565 | CS-319 1 Spring 2010 | | 33456 | Gold Physics 87000
76766 | BIO-101 1 Summer | 2009 45565 | Katz Comp. Sci. | 75000
76766 | BIO-301 1 Summer | 2010 || 58583 | Califieri History 62000
83821 | CS-190 1 Spring 2009 | | 76543 | Singh Finance 80000
83821 | CS-190 2 Spring 2009 76766 | Crick Biology 72000
83821 | CS-319 2 Spring 2010 83821 | Brandt Comp. Sci. | 92000
98345 | EE-181 1 Spring 2009 98345 | Kim Elec. Eng. | 80000
Teaches Instructor
course_id | sec_id ‘ semester ‘ year ‘ building | room_number | timeslot_id |
BIO-101 1 Summer | 2009 | Painter 514 B
BIO-301 1 Summer | 2010 | Painter 514 A
CS-101 1 Fall 2009 | Packard 101 H
CS-101 1 Spring 2010 | Packard 101 F
CS-190 1 Spring 2009 | Taylor 3128 E
CS-190 2 Spring 2009 | Taylor 3128 A
CS-315 1 Spring 2010 | Watson 120 D ; -
CS-319 1 | Spring | 2010 | Watson 100 B coursed | prereq.id
CS-319 2 Spring 2010 | Taylor 3128 C BIO-301 | BIO-101
CS-347 1 Fall 2009 | Taylor 3128 A BIO-399 | BIO-101
EE-181 1 Spring 2009 | Taylor 3128 C CS-190 | CS-101
FIN-201 1 Spring 2010 | Packard 101 B CS-315 CS-101
HIS-351 1 Spring 2010 | Painter 514 C CS-319 CS-101
MU-199 1 Spring 2010 | Packard 101 D CS-347 | CS-101
PHY-101 1 Fall 2009 | Watson 100 A EE-181 | PHY-101
Section Prereq
course_id | title | dept_name ‘ credits ‘
BIO-101 | Intro. to Biology Biology 4
BIO-301 | Genetics Biology 4
BIO-399 | Computational Biology Biology 3
CS5-101 Intro. to Computer Science | Comp. Sci. 4
o CS-190 Game Design Comp. Sci. 4
G W S Wil | s 315 Robotics s Comg. Sci. 3
Biology Watson 90000 CS-319 Image Processing Comp. Sci. 3
Comp. Sci. | Taylor 100000 CS-347 Database System Concepts | Comp. Sci. 3
Elec. Eng. | Taylor 85000 EE-181 Intro. to Digital Systems Elec. Eng. 3
Finance Painter | 120000 FIN-201 | Investment Banking Finance 3
History Painter 50000 HIS-351 | World History History 3
Music Packard | 80000 MU-199 | Music Video Production Music 3
Physics Watson 70000 PHY-101 | Physical Principles Physics 4
Department Course

