
CSCB20 Worksheet – More MySQL

1 Queries Cont...

Selecting Columns with an Aggregate Function

• Find the total number of instructors who taught a course in the Spring 2010 semester.
SELECT COUNT(id) FROM teaches WHERE semester=’Spring’ AND year=2010;

This gives us the wrong answer...want DISTINCT instructors.

SELECT COUNT(DISTINCT id) FROM teaches WHERE semester=’Spring’ AND year=2010;

Use DISTINCT whenever you do not want the duplicates to be included. With the AVG

function we want to include all duplicates, with COUNT sometimes we don’t.

The HAVING Clause

• Select the department name and average salary for instructors for each department. In-
clude only those departments whose salaries are greater than $42000.

SELECT dept name, AVG(salary) AS avg salary FROM instructor GROUP BY dept name

HAVING AVG (salary) > 42000;

The HAVING cause is a condition that applies to groups rather than tuples. The HAV-
ING clause is applied after the groups have been formed.

Q. In what order are the SQL commands applied to a relation to create the smaller relation?

1. FROM

2. The predicate in the WHERE clause (if present) is applied to tuples satisfying the
FROM clause.

3. Tuples satisfying the WHERE predicate are then placed into groups by the GROUP
BY clause (if present).

4. The HAVING clause (if present) is applied to each group. Groups not satisfying the
HAVING clause are removed.

5. The SELECT clause is applied to the remaining groups, applying aggregate functions
to get the resulting tuple for each group.

• For each course section offered in 2009, find the average total credits (tot cred) of all
students enrolled in the section, if the section had at least 2 students.

SELECT course id, semester, year, sec id, AVG(tot cred) FROM takes NATURAL

JOIN student WHERE year = 2009 GROUP BY course id, semester, year, sec id HAVING

COUNT(ID) >= 2;

The IN and NOT IN Clauses

• Find all the courses taught in both the Fall 2009 and Spring 2010 semesters.

SELECT course id FROM section WHERE semester=’Spring’ AND year=’2010’ AND

course id IN (SELECT course id FROM section WHERE semester=’Fall’ AND year=’2009’);

1

• Find all the courses taught in the Fall 2009 semester but not in the Spring 2010 semester.

SELECT course id FROM section WHERE semester=’Spring’ AND year=’2010’ AND

course id NOT IN (SELECT course id FROM section WHERE semester=’Fall’ AND year=’2009’);

IN or NOT IN can be use to check if an attribute belongs to a tuple. For example:

• Find the names of the instructors whose names are neither ’Mozart’ nor ’Einstein’.

SELECT name FROM instructor WHERE name NOT IN (’Mozart’, ’Einstein’);

We can also check whether a tuple of attributes belongs in a relation using IN or NOT

IN.

• Find the total number of distinct students who have taken course sections taught by the
instructor with ID 10101.

SELECT COUNT (DISTINCT ID) FROM takes WHERE

(course id, sec id, semester, year) IN (SELECT course id, sec id, semester,

year FROM teaches WHERE teaches.ID = 10101);

Using LIKE and NOT LIKE

• Find all the students whose names contain “an” in them.

SELECT name FROM student WHERE

name LIKE ‘%an%’;

• Find all the students whose names are 4 characters long.

SELECT name FROM student WHERE

name LIKE ‘ ’;

Use the LIKE or NOT LIKE condition to search for strings that match. The % matches
anything and the matches exactly one character.

Using Subqueries.

• We know that we can SELECT ... FROM <any relation>. This means that the FROM
clause can be the result of a SELECT statement itself.

Find the average instructors’ salaries of those departments where the average salary is
greater than $42,000 (without using a HAVING clause).

First find the depart names and their average salaries.

SELECT dept name, AVG(salary) AS avg salary FROM instructor GROUP BY dept name

Now we can SELECT from it.

SELECT dept name, avg salary

FROM (SELECT dept name, AVG(salary) AS avg salary FROM instructor GROUP BY

dept name) AS T

WHERE T.avg salary > 42000;

2

2 Creating and Updating Tables

Let’s create a new table called accounts that contains a persons ID, name, address and phone.

CREATE TABLE account(ID VARCHAR(5), name VARCHAR(20) NOT NULL, address VARCHAR(50),

phone CHAR(12));

And now let’s insert a sample row:

INSERT INTO account VALUES (’11111’, ’Anna Bretscher’, ’1265 Military Trail, Toronto’,

’416-978-7572’);

We can DROP this table if we don’t need it any more using:
DROP account;

Now lets insert into the student table a new student who studies ’Music’, has ID ’99999’, name
’Star’ and 150 credits.

INSERT INTO student VALUES(’99999’, ’Star’, ’Music’, 150);

Now we can try inserting into the instructor table using a INSERT with SELECT statement.

INSERT INTO instructor

SELECT ID, name, dept name, 18000

FROM student

WHERE dept name=’Music’ AND tot cred > 144;

We can use UPDATE to give the instructors a 5% pay raise.

UPDATE instructor

SET salary = salary*1.05;

Increase the salary by 5% for all instructors whose salary is less than $60,000.

UPDATE instructor

SET salary = salary*1.05

WHERE salary < 60000; Increase the salary by 5% for all instructors whose salary is less than or
equal to $60,000 and by 3% if the salary is greater than $60000.

UPDATE instructor

SET salary = CASE WHEN salary <= 60000 THEN salary*1.05

ELSE salary*1.03 END;

3 Views

Suppose we wish to display each student ID and a CGPA. We can break this into steps by first
creating a VIEW . You may assume that each letter grades translates to a GPA value as shown by
the table grade points.

+-------+--------+

| grade | points |

+-------+--------+

| A | 4.0 |

| A+ | 4.0 |

3

| A- | 3.7 |

| B | 3.0 |

| B+ | 3.3 |

| B- | 2.7 |

| C | 2.0 |

| C+ | 2.3 |

| C- | 1.7 |

| D | 1.0 |

| D+ | 1.3 |

| D- | 0.7 |

| F | 0.0 |

+-------+--------+

The CGPA is defined as ∑
i(crediti ∗ pointsi)∑

i creditsi

Which tables do we need columns from?

course, takes, grade points

We simplify the problem by creating a view with which columns?

ID, course id, grade, credits

The VIEW statement is then:

create view student marks AS (select id, takes.course id, grade, credits from takes

natural join course);

and the final SELECT statement is then:
select id, sum(credits*points)/sum(credits) as gpa from student marks natural join

grade points group by id;

4

4 Outer Joins

• Find all students and the courses they have taken - include students who have not taken any
courses yet.

SELECT * FROM student NATURAL LEFT OUTER JOIN takes;

Notice the difference with SELECT * FROM student NATURAL JOIN takes;.

Student Snow is missing.

Can we rewrite the LEFT OUTER JOIN using an equivalent RIGHT OUTER JOIN?

yes. switch relations order so SELECT * FROM takes NATURAL RIGHT OUTER JOIN student;

What if we would like to find all students who have not take a course?

SELECT * FROM student NATURAL LEFT OUTER JOIN takes WHERE course id IS NULL;

• Display a list of all students in the Comp. Sci. department, along with the course sec-
tions, if any, that they have taken in Spring 2009; all course sections from Spring 2009 must
be displayed, even if no student from the Comp. Sci. department has taken the course section.

Let’s first think of this in words. We want to select all the students in Comp. Sci. and natural
full outer join with all the spring 2009 courses. In MySQL this is the union of the left outer
join with the right outer join.

SELECT * FROM

(SELECT * FROM student WHERE dept name=’Comp. Sci.’) A

NATURAL FULL OUTER JOIN

(SELECT * FROM takes WHERE semester=’Spring’ AND year=2009) B;

which is in MySQL:

(select A.*, B.* from (select * from student where dept_name=’Comp. Sci.’) A

LEFT OUTER JOIN

(select * from takes where semester=’Spring’ and year=2009) B ON A.id=B.id)

UNION

(select A.*, B.* from (select * from student where dept_name=’Comp. Sci.’) A

RIGHT OUTER JOIN

(select * from takes where semester=’Spring’ and year=2009) B ON A.id=B.id);

• Another JOIN example. Select all student names and their advisor names include those
students who do not have advisors.

5

SELECT student.name AS ’student name’, instructor.name AS ’instructor name’ FROM
(student LEFT JOIN advisor ON student.id = s id) LEFT JOIN instructor ON advisor.i id
= instructor.id;

• What if we’d like to see the instructors who don’t have students to advise?

(SELECT student.name AS ’student name’, instructor.name AS ’Instructor Name’

FROM (student LEFT JOIN advisor ON student.id = s_id)

LEFT JOIN instructor ON advisor.i_id = instructor.id)

UNION

(SELECT student.name AS ’student name’, instructor.name AS ’Instructor Name’

FROM (student JOIN advisor ON student.id = s_id)

RIGHT JOIN instructor ON advisor.i_id = instructor.id);

6

5 University Relations

Relations and their schemas:

48 Chapter 2 Introduction to the Relational Model

classroom(building, room number, capacity)
department(dept name, building, budget)
course(course id, title, dept name, credits)
instructor(ID, name, dept name, salary)
section(course id, sec id, semester, year, building, room number, time slot id)
teaches(ID, course id, sec id, semester, year)
student(ID, name, dept name, tot cred)
takes(ID, course id, sec id, semester, year, grade)
advisor(s ID, i ID)
time slot(time slot id, day, start time, end time)
prereq(course id, prereq id)

Figure 2.9 Schema of the university database.

Query languages used in practice include elements of both the procedural and
the nonprocedural approaches. We study the very widely used query language
SQL in Chapters 3 through 5.

There are a number of “pure” query languages: The relational algebra is pro-
cedural, whereas the tuple relational calculus and domain relational calculus are
nonprocedural. These query languages are terse and formal, lacking the “syntactic
sugar” of commercial languages, but they illustrate the fundamental techniques
for extracting data from the database. In Chapter 6, we examine in detail the rela-
tional algebra and the two versions of the relational calculus, the tuple relational
calculus and domain relational calculus. The relational algebra consists of a set
of operations that take one or two relations as input and produce a new relation
as their result. The relational calculus uses predicate logic to define the result
desired without giving any specific algebraic procedure for obtaining that result.

2.6 Relational Operations

All procedural relational query languages provide a set of operations that can be
applied to either a single relation or a pair of relations. These operations have
the nice and desired property that their result is always a single relation. This
property allows one to combine several of these operations in a modular way.
Specifically, since the result of a relational query is itself a relation, relational
operations can be applied to the results of queries as well as to the given set of
relations.

The specific relational operations are expressed differently depending on the
language, but fit the general framework we describe in this section. In Chapter 3,
we show the specific way the operations are expressed in SQL.

The most frequent operation is the selection of specific tuples from a sin-
gle relation (say instructor) that satisfies some particular predicate (say salary >
$85,000). The result is a new relation that is a subset of the original relation (in-

44 Chapter 2 Introduction to the Relational Model

course id sec id semester year building room number time slot id

BIO-101 1 Summer 2009 Painter 514 B
BIO-301 1 Summer 2010 Painter 514 A
CS-101 1 Fall 2009 Packard 101 H
CS-101 1 Spring 2010 Packard 101 F
CS-190 1 Spring 2009 Taylor 3128 E
CS-190 2 Spring 2009 Taylor 3128 A
CS-315 1 Spring 2010 Watson 120 D
CS-319 1 Spring 2010 Watson 100 B
CS-319 2 Spring 2010 Taylor 3128 C
CS-347 1 Fall 2009 Taylor 3128 A
EE-181 1 Spring 2009 Taylor 3128 C
FIN-201 1 Spring 2010 Packard 101 B
HIS-351 1 Spring 2010 Painter 514 C
MU-199 1 Spring 2010 Packard 101 D
PHY-101 1 Fall 2009 Watson 100 A

Figure 2.6 The section relation.

Figure 2.7 shows a sample instance of the teaches relation.
As you can imagine, there are many more relations maintained in a real uni-

versity database. In addition to those relations we have listed already, instructor,
department, course, section, prereq, and teaches, we use the following relations in this
text:

ID course id sec id semester year

10101 CS-101 1 Fall 2009
10101 CS-315 1 Spring 2010
10101 CS-347 1 Fall 2009
12121 FIN-201 1 Spring 2010
15151 MU-199 1 Spring 2010
22222 PHY-101 1 Fall 2009
32343 HIS-351 1 Spring 2010
45565 CS-101 1 Spring 2010
45565 CS-319 1 Spring 2010
76766 BIO-101 1 Summer 2009
76766 BIO-301 1 Summer 2010
83821 CS-190 1 Spring 2009
83821 CS-190 2 Spring 2009
83821 CS-319 2 Spring 2010
98345 EE-181 1 Spring 2009

Figure 2.7 The teaches relation.

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.

Teaches Instructor
44 Chapter 2 Introduction to the Relational Model

course id sec id semester year building room number time slot id

BIO-101 1 Summer 2009 Painter 514 B
BIO-301 1 Summer 2010 Painter 514 A
CS-101 1 Fall 2009 Packard 101 H
CS-101 1 Spring 2010 Packard 101 F
CS-190 1 Spring 2009 Taylor 3128 E
CS-190 2 Spring 2009 Taylor 3128 A
CS-315 1 Spring 2010 Watson 120 D
CS-319 1 Spring 2010 Watson 100 B
CS-319 2 Spring 2010 Taylor 3128 C
CS-347 1 Fall 2009 Taylor 3128 A
EE-181 1 Spring 2009 Taylor 3128 C
FIN-201 1 Spring 2010 Packard 101 B
HIS-351 1 Spring 2010 Painter 514 C
MU-199 1 Spring 2010 Packard 101 D
PHY-101 1 Fall 2009 Watson 100 A

Figure 2.6 The section relation.

Figure 2.7 shows a sample instance of the teaches relation.
As you can imagine, there are many more relations maintained in a real uni-

versity database. In addition to those relations we have listed already, instructor,
department, course, section, prereq, and teaches, we use the following relations in this
text:

ID course id sec id semester year

10101 CS-101 1 Fall 2009
10101 CS-315 1 Spring 2010
10101 CS-347 1 Fall 2009
12121 FIN-201 1 Spring 2010
15151 MU-199 1 Spring 2010
22222 PHY-101 1 Fall 2009
32343 HIS-351 1 Spring 2010
45565 CS-101 1 Spring 2010
45565 CS-319 1 Spring 2010
76766 BIO-101 1 Summer 2009
76766 BIO-301 1 Summer 2010
83821 CS-190 1 Spring 2009
83821 CS-190 2 Spring 2009
83821 CS-319 2 Spring 2010
98345 EE-181 1 Spring 2009

Figure 2.7 The teaches relation.

2.1 Structure of Relational Databases 41

course id prereq id
BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1
has 12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent
part of a university. They do not include all the data an actual university database
would contain, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 7 and 8.

The order in which tuples appear in a relation is irrelevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.

Section Prereq

2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.Department Course

7

