CSCB20 WORKSHEET — MORE MYSQL

1 Queries Cont...

Selecting Columns with an Aggregate Function

e Find the total number of instructors who taught a course in the Spring 2010 semester.
SELECT COUNT(id) FROM teaches WHERE semester=’Spring’ AND year=2010;

This gives us the wrong answer...want DISTINCT instructors.
SELECT COUNT(DISTINCT id) FROM teaches WHERE semester=’Spring’ AND year=2010;

Use DISTINCT whenever you do not want the duplicates to be included. With the AVG
function we want to include all duplicates, with COUNT sometimes we don’t.

The HAVING Clause

e Select the department name and average salary for instructors for each department. In-
clude only those departments whose salaries are greater than $42000.

SELECT dept_name, AVG(salary) AS avg salary FROM instructor GROUP BY dept_name
HAVING AVG (salary) > 42000;

The HAVING cause is a condition that applies to groups rather than tuples. The HAV-
ING clause is applied after the groups have been formed.

Q. In what order are the SQL commands applied to a relation to create the smaller relation?
1. FROM

2. The predicate in the WHERE clause (if present) is applied to tuples satisfying the
FROM clause.

3. Tuples satisfying the WHERE predicate are then placed into groups by the GROUP
BY clause (if present).

4. The HAVING clause (if present) is applied to each group. Groups not satisfying the
HAVING clause are removed.

5. The SELECT clause is applied to the remaining groups, applying aggregate functions
to get the resulting tuple for each group.

e For each course section offered in 2009, find the average total credits (tot_cred) of all
students enrolled in the section, if the section had at least 2 students.

SELECT course_id, semester, year, sec_id, AVG(tot_cred) FROM takes NATURAL
JOIN student WHERE year = 2009 GROUP BY course_id, semester, year, sec_id HAVING
COUNT(ID) >= 2;

The IN and NOT IN Clauses

e Find all the courses taught in both the Fall 2009 and Spring 2010 semesters.
SELECT course_id FROM section WHERE semester=’Spring’ AND year=’2010’ AND
course_id IN (SELECT course_id FROM section WHERE semester=’Fall’ AND year=’2009’);

e Find all the courses taught in the Fall 2009 semester but not in the Spring 2010 semester.

SELECT course_id FROM section WHERE semester=’Spring’ AND year=’2010’ AND
course_id NOT IN (SELECT course_id FROM section WHERE semester=’Fall’ AND year=’2009’)

IN or NOT IN can be use to check if an attribute belongs to a tuple. For example:

e Find the names of the instructors whose names are neither '"Mozart’ nor ’Einstein’.
SELECT name FROM instructor WHERE name NOT IN (’Mozart’, ’Einstein’);
We can also check whether a tuple of attributes belongs in a relation using IN or NOT
IN.

e Find the total number of distinct students who have taken course sections taught by the
instructor with ID 10101.

SELECT COUNT (DISTINCT ID) FROM takes WHERE
(course_id, sec_id, semester, year) IN (SELECT course_id, sec_id, semester,
year FROM teaches WHERE teaches.ID = 10101);

Using LIKE and NOT LIKE

e Find all the students whose names contain “an” in them.
SELECT name FROM student WHERE
name LIKE ‘%an%’;

e Find all the students whose names are 4 characters long.

SELECT name FROM student WHERE
name LIKE ‘_ _ _ _’;

Use the LIKE or NOT LIKE condition to search for strings that match. The % matches
anything and the _ matches exactly one character.

Using Subqueries.

e We know that we can SELECT ... FROM <any relation>. This means that the FROM
clause can be the result of a SELECT statement itself.

Find the average instructors’ salaries of those departments where the average salary is
greater than $42,000 (without using a HAVING clause).

First find the depart names and their average salaries.
SELECT dept_name, AVG(salary) AS avg_salary FROM instructor GROUP BY dept_name
Now we can SELECT from it.

SELECT dept_name, avg_salary

FROM (SELECT dept_name, AVG(salary) AS avg.salary FROM instructor GROUP BY
dept_name) AS T

WHERE T.avg_salary > 42000;

2 Creating and Updating Tables

Let’s create a new table called accounts that contains a persons ID, name, address and phone

CREATE TABLE account(ID VARCHAR(5), name VARCHAR(20) NOT NULL, address VARCHAR(50),
phone CHAR(12));
And now let’s insert a sample row:

INSERT INTO account VALUES (’11111°, ’Anna Bretscher’, ’1265 Military Trail, Toronto’,
’416-978-7572°) ;
We can DROP this table if we don’t need it any more using;:

DROP account;
Now lets insert into the student table a new student who studies ’Music’, has ID '99999’, name
"Star’ and 150 credits.

INSERT INTO student VALUES(’99999’, ’Star’, ’Music’, 150);
Now we can try inserting into the instructor table using a INSERT with SELECT statement.

INSERT INTO instructor
SELECT ID, name, dept_name, 18000
FROM student
WHERE dept_name=’Music’ AND tot_cred > 144;
We can use UPDATE to give the instructors a 5% pay raise.

UPDATE instructor
SET salary = salary*1.05;

Increase the salary by 5% for all instructors whose salary is less than $60,000.

UPDATE instructor
SET salary = salary*1.05
WHERE salary < 60000; Increase the salary by 5% for all instructors whose salary is less than or
equal to $60,000 and by 3% if the salary is greater than $60000.

UPDATE instructor
SET salary = CASE WHEN salary <= 60000 THEN salary*1.05
ELSE salary*1.03 END;

3 Views

Suppose we wish to display each student ID and a CGPA. We can break this into steps by first
creating a VIEW . You may assume that each letter grades translates to a GPA value as shown by
the table grade_points.

e e +
| grade | points |
e e +
| A | 4.0 |
| A+ I 4.0 |

QO O, P P NDNNDNDWWW
O N WO NWONWO~N

|
|
|
|
|
|
|
D I
|
I
|
+

The CGPA is defined as

>, (eredit; * points;)
>, credits;

‘Which tables do we need columns from?

course, takes, grade_points
We simplify the problem by creating a view with which columns?

ID, course_id, grade, credits
The VIEW statement is then:

create view student_marks AS (select id, takes.course_id, grade, credits from takes
natural join course);

and the final SELECT statement is then:

select id, sum(credits*points)/sum(credits) as gpa from student marks natural join
grade_points group by id;

4 QOuter Joins

e Find all students and the courses they have taken - include students who have not taken any
courses yet.

SELECT * FROM student NATURAL LEFT OUTER JOIN takes;

Notice the difference with SELECT * FROM student NATURAL JOIN takes;.

Student Snow is missing.

Can we rewrite the LEFT OUTER JOIN using an equivalent RIGHT OUTER JOIN?
yes. switch relations order so SELECT * FROM takes NATURAL RIGHT OUTER JOIN student;

What if we would like to find all students who have not take a course?

SELECT * FROM student NATURAL LEFT OUTER JOIN takes WHERE course_id IS NULL;

e Display a list of all students in the Comp. Sci. department, along with the course sec-
tions, if any, that they have taken in Spring 2009; all course sections from Spring 2009 must
be displayed, even if no student from the Comp. Sci. department has taken the course section.

Let’s first think of this in words. We want to select all the students in Comp. Sci. and natural
full outer join with all the spring 2009 courses. In MySQL this is the union of the left outer
join with the right outer join.

SELECT * FROM

(SELECT * FROM student WHERE dept_name=’Comp. Sci.’) A
NATURAL FULL OUTER JOIN

(SELECT * FROM takes WHERE semester=’Spring’ AND year=2009) B;

which is in MySQL:

(select A.*, B.* from (select * from student where dept_name=’Comp. Sci.’) A
LEFT OUTER JOIN
(select * from takes where semester=’Spring’ and year=2009) B ON A.id=B.id)

UNION
(select A.*, B.x from (select * from student where dept_name=’Comp. Sci.’) A

RIGHT OUTER JOIN
(select * from takes where semester=’Spring’ and year=2009) B ON A.id=B.id);

e Another JOIN example. Select all student names and their advisor names include those
students who do not have advisors.

SELECT student.name AS ’student name’, instructor.name AS ’instructor name’ FROM
(student LEFT JOIN advisor ON student.id = s_id) LEFT JOIN instructor ON advisor.i_id
= instructor.id;

What if we’d like to see the instructors who don’t have students to advise?

(SELECT student.name AS ’student name’, instructor.name AS ’Instructor Name’
FROM (student LEFT JOIN advisor ON student.id = s_id)
LEFT JOIN instructor ON advisor.i_id = instructor.id)
UNION
(SELECT student.name AS ’student name’, instructor.name AS ’Instructor Name’
FROM (student JOIN advisor ON student.id = s_id)
RIGHT JOIN instructor ON advisor.i_id = instructor.id);

5 University Relations

Relations and their schemas:

classroom(building, room_number, capacity)
department(dept-name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)

section(course.id, sec_id, semester, year, building, room_number, time_slot_id)

teaches(ID, course.id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)

takes(ID, course_id, sec_id

advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

, semester, year, grade)

‘ ID ‘ course_id ‘ sec_id | semester ‘ year |
10101 | CS-101 1 Fall 2009
10101 | CS-315 1 Sprin; 2010
10101 | CS-347 1 [Ean | 2000 | [[Tname R
12121 | FIN-201 1 Spring 2010 10101 | Srinivasan | Comp. Sci. | 65000
15151 | MU-199 1 Spring 2010 12121 | Wu Finance 90000
22222 | PHY-101 1 Fall 2009 15151 | Mozart Music 40000
32343 | HIS-351 1 Spring 2010 22222 | Einstein Physics 95000
45565 | CS-101 1 Spring 2010 | | 32343 | ElSaid History 60000
45565 | CS-319 1 Spring 2010 | | 33456 | Gold Physics 87000
76766 | BIO-101 1 Summer | 2009 45565 | Katz Comp. Sci. | 75000
76766 | BIO-301 1 Summer | 2010 || 58583 | Califieri History 62000
83821 | CS-190 1 Spring 2009 | | 76543 | Singh Finance 80000
83821 | CS-190 2 Spring 2009 76766 | Crick Biology 72000
83821 | CS-319 2 Spring 2010 83821 | Brandt Comp. Sci. | 92000
98345 | EE-181 1 Spring 2009 98345 | Kim Elec. Eng. | 80000
Teaches Instructor
course_id | sec_id ‘ semester ‘ year ‘ building | room_number | timeslot_id |
BIO-101 1 Summer | 2009 | Painter 514 B
BIO-301 1 Summer | 2010 | Painter 514 A
CS-101 1 Fall 2009 | Packard 101 H
CS-101 1 Spring 2010 | Packard 101 F
CS-190 1 Spring 2009 | Taylor 3128 E
CS-190 2 Spring 2009 | Taylor 3128 A
CS-315 1 Spring 2010 | Watson 120 D ; -
CS-319 1 | Spring | 2010 | Watson 100 B coursed | prereq.id
CS-319 2 Spring 2010 | Taylor 3128 C BIO-301 | BIO-101
CS-347 1 Fall 2009 | Taylor 3128 A BIO-399 | BIO-101
EE-181 1 Spring 2009 | Taylor 3128 C CS-190 | CS-101
FIN-201 1 Spring 2010 | Packard 101 B CS-315 CS-101
HIS-351 1 Spring 2010 | Painter 514 C CS-319 CS-101
MU-199 1 Spring 2010 | Packard 101 D CS-347 | CS-101
PHY-101 1 Fall 2009 | Watson 100 A EE-181 | PHY-101
Section Prereq
course_id | title | dept_name ‘ credits ‘
BIO-101 | Intro. to Biology Biology 4
BIO-301 | Genetics Biology 4
BIO-399 | Computational Biology Biology 3
CS5-101 Intro. to Computer Science | Comp. Sci. 4
o CS-190 Game Design Comp. Sci. 4
G W S Wil | s 315 Robotics s Comg. Sci. 3
Biology Watson 90000 CS-319 Image Processing Comp. Sci. 3
Comp. Sci. | Taylor 100000 CS-347 Database System Concepts | Comp. Sci. 3
Elec. Eng. | Taylor 85000 EE-181 Intro. to Digital Systems Elec. Eng. 3
Finance Painter | 120000 FIN-201 | Investment Banking Finance 3
History Painter 50000 HIS-351 | World History History 3
Music Packard | 80000 MU-199 | Music Video Production Music 3
Physics Watson 70000 PHY-101 | Physical Principles Physics 4
Department Course

