
CSCB20 – Week 9

Introduction to Database and
Web Application Programming

Anna Bretscher*

 Winter 2017
*thanks to Alan Rosselet for providing the slides these are adapted from.

Week 9
Web services – defining return types
Web services – defining return errors

PHP and MySQL

Connecting to a database

Making queries

Displaying the results

Web	 Services	
•  In Assignment 2 – part 2 you use PHP embedded within an

HTML document to implement dynamic HTML content

•  However, HTML is only one of several kinds of data a server
could produce for use by a client

•  A Web service refers to use of the Web’s HTTP protocol to
invoke programs and retrieve their results

•  The general idea is that we should be able to call programs
using URL references, just as we do to refer to Web pages

•  Like traditional functions, Web-service programs can take
parameters and produce results, which may be written as
HTML, but also as XML, JSON, plain text, or other formats

Web	 Services	 and	 PHP	
•  The type of output produced by a Web service must be

explicitly specified, since it can take different ones

•  The client needs to know how to interpret the byte values
returned by the server

•  HTTP, the Internet protocol used for Web URL requests and
responses, provides a “Content-type” header for this purpose

•  In PHP, the “type” of the result value(s) defaults to HTML (“text/
html”), but can be explicitly specified using:

 header("Content-type: type/subtype");

•  The header() function must be called before a PHP script
generates any output (since the client who called the script
needs the header information to interpret that output)

MIME	 Content-‐Types	
•  MIME types are used to communicate the type of data sent

by a server to a client (e.g. a jpeg image, or an html file),
and vice versa (e.g. a file upload from a client)

•  MIME types are specified in two parts: “type/subtype”, e.g.:

MIME type related file extension
text/plain .txt
text/html .html, .htm, ...
text/css .css
application/
json
image/png .png
image/jpg .jpeg, .jpg, .jpe
text/javascript .js

A	 PHP	 Web	 service	
•  Let’s examine a simple example of a PHP Web service that

take “base” and “exp” parameters, and returns the base
raised to the exp (exponent) power.

•  A URL to invoke this service might look like this:

h<ps://mathlab…/cscb20w17/utorid/power.php?base=5&exp=3	
•  How would we implement this service in PHP?

<?php
 header("Content-type: text/plain");

 $base = (int) $_REQUEST["base"];

 $exp = (int) $_REQUEST["exp"];

 $result = pow($base, $exp);

 print $result;
?>

Web	 Service	 Errors	
•  When implementing a Web service, we must make

provision for errors, such as omission of a required
parameter or an invalid parameter value. E.g.

 https://mathlab…/utorid/power.php?base=5&exp=w

 https://mathlab…/utorid/power.php?base=5

•  How should such an error be reported?

•  We could return an HTML error message, but what if the
client (caller) takes the result and displays it in a result <div>
on their Web page, now they display an error message
where the user expects a number

•  We need a mechanism that will enable the caller to detect
that the result is an error, as opposed to a result value.

HTTP	 Status	 Codes	
The Web’s HTTP protocol provides a mechanism for signaling
the outcome of a request, that can be used for both ordinary
Web pages (e.g. 404 Not Found), and for Web services (e.g.
400 illegal request)

HTTP
code

Meaning

200 OK
301-303 page has moved (temporarily or

permanently)
400 illegal request
401 authentication required
403 you are forbidden to access this page
404 page not found
410 gone; missing data or resource
500 internal server error

A Web Service with Error Handling
We could rewrite the power() web service to
detect missing or invalid parameters as follows:

<?php
 $base = $_REQUEST["base"];
 $exp = $_REQUEST["exp"];
 if (is_numeric($base) and is_numeric($exp)) {
 header("Content-type: text/plain");
 ... as before for valid input ...
 } else {

 header("HTTP/1.1 400 Invalid Request");
 die("invalid request; required parameters");
 }
?>

Web	 Service	 Output	 Types	
So far, our Web service examples have output values
expressed as MIME type text/plain.

More commonly, a Web service invoked from a Web page will
return an HTML fragment, XML data, or JSON data.

Why an HTML fragment? Because normally the result returned
by a Web service will be inserted into an existing HTML
document, e.g. as the content of a <div>

Web	 Service	 Output	 Types	
Suppose we want to generate an HTML list of factorial
values, up to a user-supplied value of “n”:
<?php
 header("Content-type: text/html");
 $limit = (int) $_GET["n"];
 $fact = 1;
 for ($i = 1; $i < $limit; $i++) { ?>
 Factorial of <?= $i ?> is <?= $fact ?>
 <?php $fact = $fact * $i;
 }
?>

Later we’ll look at how an HTML fragment, like the
one generated by this script could be inserted into a
Web page

PHP and MySQL
We can use PHP to connect to a MySQL database using MySQLi:

<?php
$servername = "localhost"; // mathlab.utsc.utoronto.ca
$username = "username"; // utorid
$password = "password"; // utorid password
$db = "database_name" // could be utorid, imdb
// Create connection
$conn = mysqli_connect($servername, $username, $password, $db);

// Check connection
if (!$conn) {
 die("Connection failed: " . mysqli_connect_error());
}
echo "Connected successfully";

// After we are done, close the connection
mysqli_close($conn);
?>

Using the data
Once we have a connection, we can begin using the database.
<?php
$sql = "SELECT first_name, last_name FROM actors";
$result = mysqli_query($conn, $sql);

// if the query returned any tuples output each tuple
if (mysqli_num_rows($result) > 0) {
 // as long as there is a next tuple, output
 while($row = mysqli_fetch_assoc($result)) {?>
 Name <?= $row["firstname”].“ “.$row["lastname”]?>

<?php } ?>
} else {
 echo "0 results";
}
?>

Staying Secure
Recall we can use PHP to connect to a MySQL database using
MySQLi:

<?php
$servername = "localhost"; // mathlab.utsc.utoronto.ca

$username = "username”; // utorid

$password = "password"; // utorid password

$db = "database_name" // could be utorid, imdb

// Create connection
$conn = mysqli_connect($servername, $username,

 $password, $db);

But in this way we have all our private passwords in our file –
accessible. Better solution…

Including .php file
We include a config.php file with this data specified:
<?php
$servername = "localhost"; //mathlab.utsc.utoronto.ca

$username = "username”; // utorid

$password = "password"; // utorid password

$dbname = "database_name" // could be utorid, imdb

In our original file we include the config file:
include 'config.php';

// Create connection

$conn = mysqli_connect($servername, $username,
 $password, $dbname);

