
CSCB20 – Week 5

Introduction to Database and
Web Application Programming

Anna Bretscher
 Winter 2016	

Last Week	

•  Creating tables, setting constraints…

•  Inserting and updating tables

•  More query commands
o HAVING clause
o  LIKE clause
o  IN clause
o  UNION, INTERSECT
o CASE

This Week	

•  Revisit creating tables

•  Creating views

•  Outer Joins
o  Left
o  Right
o  Full

•  More on NULL values

•  E-R Model basics

Views	

•  A view is a virtual relation.

•  A view is defined in terms of stored tables (called
base tables) and other views.

•  Access a view like any base table.

•  Materialized views exist, but are actually
constructed and stored. Expensive to maintain!

•  We’ll use only virtual views.

Creating Views	

CREATE VIEW view_name AS SELECT STATEMENT;

CREATE VIEW view_name(col_nam1, col_name2, …, col_namek)

 AS SELECT STATEMENT;
	

CREATE VIEW faculty AS SELECT ID, name, dept_name

 FROM instructor;
	

We can now use view faculty as we would a table.	

	

Every time the view is used, it is reconstructed.	

	

Why Use Views	

Allow us to break down a large query.

Make available specific category of data a particular user.

Gives another way to think about the data.

Q. Why is it good that views are virtual?

A. If a table is changed the corresponding view is changed
appropriately.

Outer Joins	

What does the following query return?

 SELECT * FROM student INNER JOIN takes
ON student.id = takes.id;

We would like it to return every student and the courses
they are taking.

Q. What about students who have not yet taken any
courses?

A. They are left out.

Dangling Tuples	

When JOINs require some attributes to match, tuples
lacking a match are left out.

These tuples are said to be “dangling”.

OUTER JOINs preserve dangling tuples by padding
them with NULL in the other relation.

INNER JOINs do not pad with NULL.

Outer Joins	

Use OUTER JOINS to prevent this loss of information.

The LEFT OUTER JOIN preserves tuples only in the relation
to the left of the JOIN.

The RIGHT OUTER JOIN preserves tuples only in the
relation to the right of the JOIN.

The FULL OUTER JOIN preserves tuples in both relations.*

* MySQL does not support FULL OUTER JOIN, but we can emulate by doing the UNION of a LEFT and a RIGHT.

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

B C

2 3

6 7

R S

R NATURAL JOIN S

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

4 5 NULL

B C

2 3

6 7

R S

R NATURAL LEFT JOIN S

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

NULL 6 7

B C

2 3

6 7

R S

R NATURAL RIGHT JOIN S

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

4 5 NULL

NULL 6 7

B C

2 3

6 7

R S

R NATURAL FULL JOIN S

OR

(R NATURAL LEFT JOIN S) UNION (R NATURAL RIGHT JOIN S)

JOIN Recap	

A JOIN B ON C inner join

A {LEFT | RIGHT | FULL} JOIN B ON C outer join

A NATURAL JOIN B natural inner join

A NATURAL {LEFT | RIGHT | FULL} JOIN B natural outer

 join

NULL	

We can check for NULL values using:

IS NULL

IS NOT NULL

Because we have NULL, we need three truth values for
comparisons:

TRUE, FALSE and UNKNOWN

If one or both operands is NULL, the comparison always
evaluates to UNKNOWN.

Otherwise, comparisons evaluate to TRUE and FALSE.

Booleans and UNKNOWN	

What is NOT UNKNOWN?
UNKNOWN.

What is TRUE AND UNKNOWN?
UNKNOWN.

What is TRUE OR UNKNOWN?
TRUE.

WHAT IS FALSE AND UNKNOWN?
FALSE.

WHAT IS FALSE OR UNKNOWN?
UNKNOWN.

NULL and Aggregation	

Some NULLS in A All NULLS in A

MIN(A)

Ignore the NULLS
NULL

MAX(A)

SUM(A)

AVG(A)

COUNT(A) 0

COUNT(*) All tuples count

