
CSCB20 – Week 4

Introduction to Database and
Web Application Programming

Anna Bretscher
 Winter 2017

	

Last Week	

Intro to SQL and MySQL

Mapping Relational Algebra to SQL queries

Focused on queries to start – assumed tables and
database exist.

Creating tables, setting constraints…

This Week	

•  Creating tables, setting constraints…

•  Inserting and updating tables

•  More query commands
o HAVING clause
o  LIKE clause
o  IN clause
o  UNION, INTERSECT
o CASE

This Week – Time Permi:ing	

•  Creating views

•  Outer Joins
o  Left
o  Right
o  Full

•  More on NULL values

Null Value	

Every type can have the special value null. 	

	

A value of null indicates the value is unknown or that it
may not exist at all.	

	

Sometimes we do not want a null value at all – we can add
such a constraint.
	

Creating a Table	

SQL Notation:	

	

CREATE TABLE table_name 	

	
 	
(col_name1 type1, 	

	
 	
col_name2 type2, 	

	
 	
… ,	

	
 	
col_namen typen, 	

	
 	
<integrity-­‐‑constraint1>, 	

	
 	
… ,	

	
 	
<integrity-­‐‑constraintk>);	

	

Integrity Constraints	

Primary key(list of a:ributes) : 	

	
These a:ributes form the primary keys for the
	
relation. Primary keys must be non-­‐‑null and unique.	

	

Foreign key(list of a:ributes) references s : 	

	
The values of these a:ributes for any tuple in the
	
relation must correspond to values of the primary key
	
a2ributes of some tuple in relation s. 	

	

not null: 	

	
Specifies that this a:ribute may not have the null value.
	
We list this constraint when defining the type of the
	
a:ribute.	

Examples	

CREATE TABLE department	

	
(dept_name 	
VARCHAR(20),	

 building 	
VARCHAR(15),	

	
 budget	
 	
NUMERIC(12,2),	

	
 PRIMARY KEY (dept_name));	

	

CREATE TABLE course	

	
(course_id 	
VARCHAR(7),	

	
 title 	
 	
VARCHAR(50),	

	
 dept_name 	
VARCHAR(20),	

	
 credit 	
 	
NUMERIC(2,0),	

	
 PRIMARY KEY (course_id),	

	
 FOREIGN KEY (dept_name) REFERENCES department);	

	

	
	

2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

Editing Tables	

DROP TABLE table_name; 	
remove the table	

	

DELETE FROM table_name 	
delete tuples satisfying 	

	
 WHERE predicate; 	
the predicate	

	

ALTER TABLE table_name 	
add a column	

	
 ADD column type; 	
	

	

ALTER TABLE table_name 	
remove a column	

	
 DROP column; 	
 	
	

Inserting	

In MySQL we can insert into a table with the command:	

	

	
INSERT INTO table_name 	

	
 	
VALUES (value1, value2, …, valuen,);	

OR	

	
INSERT INTO table_name (col1, col2, …, coln)	

	
 	
VALUES (value1, value2, …, valuen,);	

OR	

	
INSERT INTO table_name 	

	
 	
SELECT QUERY	

For example:	

INSERT INTO instructor 	

	
 	
SELECT ID, name, dept_name, 18000	

	
 	
FROM student	

	
 	
WHERE dept_name = ‘Music’ AND tot_cred > 144;	

	

	

	

	

Updating	

In MySQL we can update a table with the command:	

	

	
UPDATE table_name 	

	
 	
SET a:ribute = new_value	

	

OR	

	
UPDATE table_name 	

	
 	
SET a:ribute = new_value	

	
 	
WHERE predicate or select statement;	

OR	

	
UPDATE table_name 	

	
 	
SET a:ribute = CASE	

	
 	
 	
 	
WHEN predicate1 THEN result1	

	
 	
 	
 	
WHEN predicate2 THEN result2	

	
	
 	
 	
 	
 	
… 	
 	
	

	
 	
 	
 	
WHEN predicaten THEN resultn	

	
 	
 	
 	
ELSE result0	

	
	
 	
	
 	
 END	

	

Views	

•  A view is a virtual relation.

•  A view is defined in terms of stored tables (called
base tables) and other views.

•  Access a view like any base table.

•  Materialized views exist, but are actually
constructed and stored. Expensive to maintain!

•  We’ll use only virtual views.

Creating Views	

CREATE VIEW view_name AS SELECT STATEMENT;

CREATE VIEW view_name(col_nam1, col_name2, …, col_namek)

 AS SELECT STATEMENT;
	

CREATE VIEW faculty AS SELECT ID, name, dept_name

 FROM instructor;
	

We can now use view faculty as we would a table.	

	

Every time the view is used, it is reconstructed.	

	

Why Use Views	

Allow us to break down a large query.

Make available specific category of data a particular user.

Gives another way to think about the data.

Q. Why is it good that views are virtual?

A. If a table is changed the corresponding view is changed
appropriately.

Outer Joins	

What does the following query return?

 SELECT * FROM student INNER JOIN takes
ON student.id = takes.id;

We would like it to return every student and the courses
they are taking.

Q. What about students who have not yet taken any
courses?

A. They are left out.

Dangling Tuples	

When JOINs require some attributes to match, tuples
lacking a match are left out.

These tuples are said to be “dangling”.

OUTER JOINs preserve dangling tuples by padding
them with NULL in the other relation.

INNER JOINs do not pad with NULL.

Outer Joins	

Use OUTER JOINS to prevent this loss of information.

The LEFT OUTER JOIN preserves tuples only in the relation
to the left of the JOIN.

The RIGHT OUTER JOIN preserves tuples only in the
relation to the right of the JOIN.

The FULL OUTER JOIN preserves tuples in both relations.*

* MySQL does not support FULL OUTER JOIN, but we can emulate by doing the UNION of a LEFT and a RIGHT.

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

B C

2 3

6 7

R S

R NATURAL JOIN S

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

4 5 NULL

B C

2 3

6 7

R S

R NATURAL LEFT JOIN S

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

NULL 6 7

B C

2 3

6 7

R S

R NATURAL RIGHT JOIN S

JOIN Examples	

A B

1 2

4 5

A B C

1 2 3

4 5 NULL

NULL 6 7

B C

2 3

6 7

R S

R NATURAL FULL JOIN S

OR

(R NATURAL LEFT JOIN S) UNION (R NATURAL RIGHT JOIN S)

JOIN Recap	

A JOIN B ON C inner join

A {LEFT | RIGHT | FULL} JOIN B ON C outer join

A NATURAL JOIN B natural inner join

A NATURAL {LEFT | RIGHT | FULL} JOIN B natural outer

 join

NULL	

We can check for NULL values using:

IS NULL

IS NOT NULL

Because we have NULL, we need three truth values for
comparisons:

TRUE, FALSE and UNKNOWN

If one or both operands is NULL, the comparison always
evaluates to UNKNOWN.

Otherwise, comparisons evaluate to TRUE and FALSE.

Booleans and UNKNOWN	

What is NOT UNKNOWN?
UNKNOWN.

What is TRUE AND UNKNOWN?
UNKNOWN.

What is TRUE OR UNKNOWN?
TRUE.

WHAT IS FALSE AND UNKNOWN?
FALSE.

WHAT IS FALSE OR UNKNOWN?
UNKNOWN.

NULL and Aggregation	

Some NULLS in A All NULLS in A

MIN(A)

Ignore the NULLS
NULL

MAX(A)

SUM(A)

AVG(A)

COUNT(A) 0

COUNT(*) All tuples count

