
CSCB20 – Week 3

Introduction to Database and
Web Application Programming

Anna Bretscher
 Winter 2017	

This Week	

Intro to SQL and MySQL

Mapping Relational Algebra to SQL queries

We will focus on queries to start – assume tables and
database exist.

Time permitting:

 creating tables, more involved queries…

Projection	
Symbol is Π

Selection of attributes.

 Π ID,	 salary(instructor)

SQL Notation:

SELECT col_1,…, col_N FROM instructor

 Or
SELECT * FROM instructor (means select all columns)

SELECT ID, salary FROM instructor

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.

Selection	
Notation is σp(x).	

 σsalary >= 85000(instructor)

SQL Notation:

SELECT * FROM instructor WHERE salary >= 85000

SELECT col_1,…, col_N FROM instructor WHERE salary >= 85000

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.

Natural Join	
Recall we combine two relations into a single relation.

The tuples are joined if the attributes common to both
relations are equal.

	 	 instructor	 	 	 	 	 	 	 	 	 	 	 department	
	

40 Chapter 2 Introduction to the Relational Model

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 2.1 The instructor relation.

the relationship between a specified ID and the corresponding values for name,
dept name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, from which
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is repre-
sented mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

course id title dept name credits

BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 Computational Biology Biology 3
CS-101 Intro. to Computer Science Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 Investment Banking Finance 3
HIS-351 World History History 3
MU-199 Music Video Production Music 3
PHY-101 Physical Principles Physics 4

Figure 2.2 The course relation.

2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

Natural Join 	
instructor	 	 	 	 	 	 	 	 department

The tuples are joined if the attributes common to both relations
are equal.
	
	
	
	
	
	

SQL Notation:

SELECT * FROM instructor NATURAL JOIN department

 	

50 Chapter 2 Introduction to the Relational Model

ID name salary dept name building budget

10101 Srinivasan 65000 Comp. Sci. Taylor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. All such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values are the same on all attribute names that are common
to both relations.

The Cartesian product operation combines tuples from two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute values match.

Because relations are sets, we can perform normal set operations on relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of all students in a department. Other set
operations, such as intersection and set difference can be performed as well.

As we noted earlier, we can perform operations on the results of queries. For
example, if we want to find the ID and salary for those instructors who have salary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, from that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary

12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater
than $85,000.

Cartesian Product Example	
Relations r, s:	

r x s:	
	
SQL Notation:	
	
SELECT * FROM r INNER JOIN s	
	
	 	 	 	 	or	

	
SELECT * FROM r, s	
	
Note: can have as many relations as needed…but
what may be a concern?	
	

Cartesian Product Example	
Relations r, s:	

r x s:	
	
SQL Notation:	
	
SELECT * FROM r INNER JOIN s	
	
What if we don’t want ALL rows?	
	
For example, we want rows where A’s	
value and C’s value are equal?	
	
SELECT * FROM r INNER JOIN s ON A = C	
	
	

Inner Join 	
SQL Notation:

SELECT Column1, Column2, …, ColumnK FROM

 TableA INNER JOIN TableB
 ON join_constraints
	 WHERE contraints	

 ORDER BY ColumnX

There are many other options, we will see these later…

	 	
	
	

Self Join	
Suppose we want to join a table to itself.

We want to find those departments that are in the same building.

SQL Notation:

SELECT A.dept_name, B.dept_name FROM

 department A INNER JOIN department B
 ON A.building = B.building	

 department A 	 	 department B
2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

Union	
Relations r, s:

For r ∪ s to be valid.

1.  r, s must have the same arity (same
number of attributes)

2.  The attribute domains must be
compatible

MySQL Notation:	
	
(SELECT * FROM r) 	
UNION 	
(SELECT * FROM s)	
	
Use UNION ALL to keep duplicates.	

r ∪ s: 	

Intersection	
Relation r, s:

r ∩ s = r – (r – s)

SQL Notation:	
	
(SELECT * FROM r) 	
INTERSECT	
(SELECT * FROM s)	
	

Intersection	
SQL Notation:	
	
(SELECT * FROM r) 	
INTERSECT Does NOT Work in MySQL	
(SELECT * FROM s)	
	
 MySQL Options:	
	
LEFT AS EXERCISE	
	
	

Difference	
What would you expect them to be?

 Relations r, s:

r – s

SQL Notation:	
	
(SELECT * FROM r) 	
EXCEPT	
(SELECT * FROM s)	

Difference	
SQL Notation:	
	
(SELECT * FROM r) 	
EXCEPT Does NOT Work in MySQL	
(SELECT * FROM s)	
	
MySQL Options:	
	
LEFT AS EXERCISE

SQL Types	
char(n): A fixed-‐‑length character string.	
varchar(n): A variable-‐‑length character string with max

	 length n.	
int: An integer.	
numeric(p, d): A fixed-‐‑point number with p digits of which

	 	d of the digits are to the right of the decimal
	 	point.	

real, double precision: Floating point and double precision
	 	floating point.	

float(n): A floating point with at least n digits of precision.	

Null Value	
Every type can have the special value null. 	
	
A value of null indicates the value is unknown or that it
may not exist at all.	
	
Sometimes we do not want a null value at all – we can add
such a constraint.
	

Creating a Table	
SQL Notation:	
	
CREATE TABLE table_name 	

	 	(col_name1 type1, 	
	 	col_name2 type2, 	
	 	… ,	
	 	col_namen typen, 	
	 	<integrity-‐‑constraint1>, 	
	 	… ,	
	 	<integrity-‐‑constraintk>);	

	

Integrity Constraints	
Primary key(list of aiributes) : 	

	These aiributes form the primary keys for the
	relation. Primary keys must be non-‐‑null and unique.	

	
Foreign key(list of aiributes) references s : 	

	The values of these aiributes for any tuple in the
	relation must correspond to values of the primary key
	a5ributes of some tuple in relation s. 	

	
not null: 	

	Specifies that this airibute may not have the null value.
	We list this constraint when defining the type of the
	airibute.	

Examples	
CREATE TABLE department	

	(dept_name 	VARCHAR(20),	
 building 	VARCHAR(15),	
	 budget	 	NUMERIC(12,2),	
	 PRIMARY KEY (dept_name));	

	
CREATE TABLE course	

	(course_id 	VARCHAR(7),	
	 title 	 	VARCHAR(50),	
	 dept_name 	VARCHAR(20),	
	 credit 	 	NUMERIC(2,0),	
	 PRIMARY KEY (course_id),	
	 FOREIGN KEY (dept_name) REFERENCES department);	

	
		

2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

Editing Tables	
DROP TABLE table_name; 	remove the table	
	
DELETE FROM table_name 	delete tuples satisfying 	

	 WHERE predicate; 	the predicate	
	
ALTER TABLE table_name 	add a column	

	 ADD column type; 		
	
ALTER TABLE table_name 	remove a column	

	 DROP column; 	 		

Inserting	
In MySQL we can insert into a table with the command:	
	

	INSERT INTO table_name 	
	 	VALUES (value1, value2, …, valuen,);	

OR	
	INSERT INTO table_name (col1, col2, …, coln)	
	 	VALUES (value1, value2, …, valuen,);	

OR	
	INSERT INTO table_name 	
	 	SELECT QUERY	

For example:	
INSERT INTO instructor 	

	 	SELECT ID, name, dept_name, 18000	
	 	FROM student	
	 	WHERE dept_name = ‘Music’ AND tot_cred > 144;	

	
	
	
	

Updating	
In MySQL we can update a table with the command:	
	

	UPDATE table_name 	
	 	SET airibute = new_value	

	
OR	

	UPDATE table_name 	
	 	SET airibute = new_value	
	 	WHERE predicate or select statement;	

OR	
	UPDATE table_name 	
	 	SET airibute = CASE	
	 	 	 	WHEN predicate1 THEN result1	
	 	 	 	WHEN predicate2 THEN result2	
		 	 	 	 	… 	 		
	 	 	 	WHEN predicaten THEN resultn	
	 	 	 	ELSE result0	
		 		 	 END	

	

