This Week

• Finish last week’s proof

For all integers a, b and n with $n \geq 1$, $a \equiv_n b$ iff n divides $a - b$.

• Indirect Proofs

→ Proof by Contrapositive
→ Proof by Contradiction
1 Indirect Proofs

There are two main indirect proof methods. Proof by contrapositive and proof by contradiction.

1.1 Proof by Contrapositive

If we need to prove an implication such as \(\forall x \in D, p(x) \rightarrow q(x) \) then we have the option of proving \(\forall x \in D, \neg q(x) \rightarrow \neg p(x) \).

Let’s practice writing the contrapositive (and the negation for when we write proofs by contradiction):

For each of the following statements, write in predicate logic as an implication, then the contrapositive and then the negation. Assume that the universe is \(\mathbb{Z}^+ \).

1. Divisibility by 21 is a sufficient condition for divisibility by 7.

2. \(m \) divides \(p \) is a necessary condition for \(m \) to divide \(n \) and \(n \) to divide \(p \).

3. There are some integers whose squares are odd. Use \(q(n) : n^2 \text{ is odd} \) and \(p(n) : n \text{ is odd} \).

4. The square of any odd integer is odd.
Now let’s write a proof by *contrapositive*:

Claim. Suppose x and y are positive real numbers such that the geometric mean does not equal the arithmetic mean, *i.e.* $\sqrt{xy} \neq \frac{x+y}{2}$, then $x \neq y$.

We can write this formally as

$$\forall x \in \mathbb{R}^+, \forall y \in \mathbb{R}^+, \sqrt{xy} \neq \frac{x+y}{2} \rightarrow x \neq y$$

Notice that proving this directly is hard...so let’s try the *contrapositive*.

Write the contrapositive of our claim:

Proof by Contrapositive.
Summary:

Proof by Contrapositive.

Claim: \(\forall x \in D, p(x) \rightarrow q(x) \)

Let \(x \in D \) be arbitrary.

Assume \(\neg q(x) \).

\[\vdash \]

Derive \(\neg p(x) \), so \(\neg q(x) \rightarrow \neg p(x) \).

By the contrapositive, \(p(x) \rightarrow q(x) \).

Conclude \(\forall x \in D, p(x) \rightarrow q(x) \).

1.2 **Proof by Contrapositive Practice**

Claim. \(\forall x \in \mathbb{Z}, (x^2 - 6x + 5) \) is even \(\rightarrow \) \(x \) is odd.

Proof.

Claim. \(\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, \forall n \in \mathbb{N}, (a^2 \not\equiv_n b^2) \rightarrow (a \not\equiv_n b) \).

Why is this hard to prove directly?

Proof.
Claim. \(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (y^3 + yx^2 \leq x^3 + xy^2) \rightarrow y \leq x. \)

Proof.

CHALLENGE. Let \(n \in \mathbb{N}, \) if \(2^n - 1 \) is prime then \(n \) is prime.

Proof. State the *contrapositive:*

Let’s complete the proof:
2 Proof by Contradiction

For our next examples we need a basic definition and a theorem.

Definition.

A prime number is a number that can only be divided evenly by 1 or itself.

Fundamental Theorem of Arithmetic.

Any integer greater than 1 is either a prime number, or can be written as a unique product of prime numbers (ignoring the order).

2.1 Proof by Contradiction

Claim. \(\sqrt{2}\) is irrational.

Proof. What does irrational mean? How can we express this in mathematical notation?

Q. How do we symbolically write that \(\sqrt{2}\) is rational?

A.

Then to say irrational, we simply put a not in front:

Q. How can we show that for all pairs of integers \(p, q, \sqrt{2} \neq \frac{p}{q}\)? This is very hard. Solution?

A.

Proof. We want to show that \(\sqrt{2}\) is irrational.

We will use proof by contradiction.

Suppose that \(\sqrt{2}\) is rational. Then,
Q. How many prime factors does p^2 have? q^2?

A.

Q. How many prime factors does $2p^2$ have?

A.

Therefore...

And we can conclude that our original assumption that $\sqrt{2}$ is rational must be incorrect and $\sqrt{2}$ is irrational.

Another proof...

Theorem.

There are an infinite number of primes.

Proof.

Q. How can we prove this directly? How can we show a set is infinite?

A. Not easy in this case.
We will prove that there are an infinite number of primes using *proof by contradiction*.

Summary:

Proof by Contradiction.

Claim: \(P \)

Assume \(\neg P \).

Derive a *false* statement.

Conclude the assumption was wrong. Therefore \(P \).

Q. Suppose our claim \(P \) above is of the form \(\forall x \in X, a(x) \rightarrow b(x) \). What is \(\neg P \)?

A.
2.2 Proof by Contradiction Practice

Prove the following claims using proof by contradiction.

Claim: \(\forall n \in \mathbb{Z}, n^2 \text{ is even } \rightarrow n \text{ is even} \).

Proof.

First restate the claim by taking the negation.

Now prove the claim.

Claim: The difference of any rational number and any irrational number is irrational.

Proof.

First restate the claim by taking the negation.

Now prove the claim.

Claim: \(\sqrt{5} \text{ is irrational.} \)

Proof.

First restate the claim by taking the negation.

Now prove the claim.

3 Proof by Cases - aka Proof by Exhaustion

Claim. Prove that if \(n \in \mathbb{Z} \), then \(3n^2 + n + 14 \) is even.

Proof.

Two cases:

Case 1: \(n \) is even.

Case 2: \(n \) is odd.
Proof by Cases.

Claim: \(\forall x \in D, p(x) \rightarrow q(x) \)

Split the domain \(D \) into disjoint sets \(S_1, S_2, \ldots, S_k \) such that their union equals \(D \).

For each set \(S_i \) show that \(\forall x \in S_i, p(x) \rightarrow q(x) \).

Since \(\bigcup_i S_i = D \), conclude that \(\forall x \in D, p(x) \rightarrow q(x) \).

More Practice - All proof techniques.

Claim. Prove for every prime number \(p > 3 \), \(p = 6n + 1 \) or \(p = 6n + 5 \). First write the statement using quantifiers and logic and then prove it’s correctness.

Claim. \(\forall a \in \mathbb{Z}, a \equiv_6 3 \rightarrow a \not\equiv_3 2 \)

Prove the statement.