
CSCA48 WINTER 2015
WEEK 9 - WORST CASE COMPLEXIY

Anna Bretscher

March 9, 2015

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 1 / 11

Complexity

WHAT IS COMPLEXITY?

A measure of how efficient an algorithm is.

Q. How should we evaluate the efficiency of an algorithm? should we
code the algorithm in Python and time it for different values of n?

A. No.
This is machine dependent.
Why choose Python? why not C or Java?
Implementation details can alter the timing.
Want a method that allows us to compare different algorithms for
large input sizes without a computer.

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 2 / 11

Complexity

WORST-CASE COMPLEXITY

For an algorithm A, let t(x) be the number of steps A takes on
input x .
Then, the worst-case time complexity of A on input of size n is

Twc(n)
d
= max
|x |=n
{t(x)}

In words: Look at all the inputs of size n and take the time of the
one that is the slowest.

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 3 / 11

Complexity

WHAT IS A STEP?

There are many conventions - we will use the following:

method call 1 + steps to evaluate each argument + steps to
execute method
return statement 1 + steps to evaluate return value
if statement, while statement (not the entire loop) 1 + steps to
evaluate exit condition
assignment statement 1 + steps to evaluate each side
arithmetic, comparison, boolean operators 1 + steps to
evaluate each operand
array access 1 + steps to evaluate index
member access 2 steps
constants, variables 1 step

Often, we will just focus on operations or variable accesses.
Anna Bretscher CSCA48 Winter 2015 March 9, 2015 4 / 11

Complexity

Precondition. L is an array of integers.
Postcondition L sorted in non-decreasing order.

def insertion_sort (L):
i = 1 // 1: steps
while (i < len(L)): // 2: steps

t = L[i] // 3: steps
j = i // 4: steps
while (j > 0 and L[j-1] > t): // 5: steps

L[j] = L[j-1] // 6: steps
j = j-1 // 7: steps

L[j] = t // 8: steps
i = i+1 // 9: steps

Notation.

tIS(L) is the number of steps or time for insertion sort to run on a
specific input L.

TIS(n) is the worst case time for any input of size n.

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 5 / 11

Complexity

BOUNDING TIS(n)

Q. Why might we prefer TIS(n) to tIS(L)?

A. It is much more general.

Q. Why might computing TIS(n) be difficult?

A. We have to consider all possible inputs of size n.

→ We find upper and lower bounds for TIS(n).

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 6 / 11

Complexity

UPPER AND LOWER BOUNDS

Q. What do we mean by an upper bound for TIS(n)?

A. The max number of steps that the code can make.

Q. What do we mean by a lower bound for TIS(n)?

A. We want the maximum number of steps that an input will force.
→ No input can take more steps than the upper bound.
→ A lower bound cannot take less steps than any input.

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 7 / 11

Complexity

FINDING AN UPPER BOUND

def insertion_sort (L):
i = 1 // 1: 3 steps
while (i < len(L)): // 2: 5 steps

t = L[i] // 3: 5 steps
j = i // 4: 3 steps
while (j > 0 and L[j-1] > t): // 5: 12 steps

L[j] = L[j-1] // 6: 9 steps
j = j-1 // 7: 5 steps

A[j] = t // 8: 5 steps
i = i+1 // 9: 5 steps

Q. At most how many steps do lines 5-7 execute?

A. At most len(L) times the number of steps, so n(9+5+12) + the loop test
12.

Q. At most how many steps do lines 2-9 take? line 1?

A. Loops at most n times, so n(n26+12+23)+5+3 = 26n2 +35n+8.

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 8 / 11

Complexity

BIG OH - THE UPPER BOUND

Idea. Want a function g(n) such that for
BIG enough n, i.e., n > b,
T (n)≤ c ·g(n)
Where the constant c ∈ R+ and b ∈ N

Definition: Big Oh
Let g ∈ F . O(g) is the set of functions f ∈ F such that

∃c ∈ R+,∃b ∈ N,∀n ∈ N,n ≥ b→ f (n)≤ c ·g(n)

Where F is the set of functions, f : Nk → R+
0 .

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 9 / 11

Complexity

BIG OH

Let g ∈ F . O(g) is the set of functions f ∈ F such that

∃c ∈ R+,∃b ∈ N,∀n ∈ N,n ≥ b→ f (n)≤ c ·g(n)

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 10 / 11

Complexity

INSERTION SORT

Recall that we discovered the number of steps insertion sort does
on a list of size n is at most

TIS(n)≤ 26n2 +35n+8∀n ≥ 1

Q. For which function g(n) does TIS(n) ∈ O(g(n))?
A. g(n) = n2

Q. Why?
A. Notice that 26n2 +35n+8≤ 26n2 +35n2 +8n2 = 69n2 for n ≥ 1.

Therefore, let c = 69 and b = 1.

Then ∃c ∈ R+,∃b ∈ N,∀n ∈ N,n ≥ b→ TIS(n)≤ cn2.

Anna Bretscher CSCA48 Winter 2015 March 9, 2015 11 / 11

	Complexity

