
CSCA48 WINTER 2015
WEEK 11 - BALANCED TREES

Anna Bretscher

March 23, 25/26, 2015

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 1 / 30



WHY BALANCED TREES?

What is the worst case complexity of insert, delete,
search in a binary search tree?
O(n)
We need to do something better...

AVL trees
B-trees
Splay trees

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 2 / 30



AVL TREES

AVL Trees were invented by Adelson-Velskii and Landis in 1962.
An AVL tree is similar to a BST in that it

stores values in the internal nodes and
has a property relating the values stored in a subtree to the values
in the parent node.
but different from a BST because
The height of an AVL tree is O(logn).
Each internal node has a balance property equal to -1, 0, 1.
Balance value = height of the left subtree - height of the right
subtree.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 3 / 30



AVL TREES

44

17

32

78

50

48 62

88

-1

-1 +1

0 0

00

0

Q. What is the purpose of the balance property?
A. Ensures that the height is always a function of logn.
Q. What information will we need to store in order to update the

balance factors easily?
A. The height of the tree rooted at each node.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 4 / 30



44

17

32

78

50

48 62

88

-1

-1 +1

0 0

00

0

Searching in an AVL tree is the same as a BST.
Consider inserting 6 into the tree above.

Q: What are the new balance factors in the tree after inserting 6?
A: 17 has value 0

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 5 / 30



AVL INSERTION

44

17

32

78

50

48 62

88

-1

0 +1

0 0

00

0

6

0

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 6 / 30



AVL INSERTION

Q. Let’s insert 35. What are the balance factors now?

44

17

32

78

50

48 62

88

-1

-1 +1

0 0

00

0

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 7 / 30



AVL INSERTION

Q. Let’s insert 35. What are the balance factors now?

44

17

32

78

50

48 62

88

0

-2 +1

0 0

00

-1

35

0

A. 32 has -1, 17 has -2. 44 has 0.
Q. How do we solve this problem?

We resolve the problem by doing a single rotation. How should
we rotate?
Counter clock-wise. 17 comes down, 32 moves up.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 8 / 30



AVL INSERTION

We rotate counter clock-wise. 17 comes down, 32 moves up.

44

17

32 78

50

48 62

88

-1

0 +1

0 0

00

0

3517

0

Q. How do we update the balance factors?
A. Update the heights first and then update balance factors.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 9 / 30



AVL INSERTION

Now let’s insert 45.

44

17

32 78

50

48 62

88

-2

0 +2

+1 0

0+1

0

3517

45

0

0

Notice the balance factors now. How should we resolve the
problem?

A. Do a single rotation clock-wise about the 78. 50 goes up, 78 down.
Q. What happens to the subtree rooted at 62?
A. It becomes the left subtree of 78.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 10 / 30



AVL INSERTION

44

17

32 50

48

45 62

78

-1

0 0

+1 0

00

0

3517

0

88

0

Notice the updated balance factors.
Let’s insert 46 this time.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 11 / 30



AVL INSERTION

44

17

32 50

48

45 62

78

-2

0 +1

+2 0

0-1

0

3517

0

88

46

0

0

Q. Can we do a rotation about 48?
A. NO. Need a double rotation.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 12 / 30



DOUBLE ROTATION

44

17

32 50

48

45

62

78

-2

0 +1

+2 0

0+1

0

3517

0

8846

0

0

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 13 / 30



DOUBLE ROTATION

44

17

32 50

46

48 62

78

-1

0 0

0 0

00

0

3517

0

8845

0

0

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 14 / 30



DELETE

If the key is a leaf node, delete and rebalance

If the key is an internal node, replace with predecessor/successor
and rebalance.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 15 / 30



COMPLEXITY

Since the tree is balanced the height of an AVL tree is O(log n).

This means insert, delete and search are all O(log n).

Searching for the location to insert/delete, takes O(log n).

Rebalancing takes at most O(log n).

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 16 / 30



B-TREES

A B-tree of order m has the following properties:

Internal nodes have at most m children (at most m-1 keys)

Internal nodes (except the root) have at most dm
2 e children

A non-leaf node with k children has k-1 keys

All leaves are at the same distance from the root

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 17 / 30



B-TREES

If a node has keys k1,k2, . . . ,ki−1 and children c1,c2, . . . ,ci where
dm

2 e ≤ i ≤m then cj < kj and ci > ki−1.

All operations are O(h) where h is the height of the tree.

h ≤ blogmin(
n+1

2 )+1)c where min is the minimum number of
elements in a node.

F B-Trees are used in large file systems including those used by
Mac OS/X, some Linux and Microsoft operating systems.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 18 / 30



2-3 TREES

A 2-3 tree is a B-Tree of order m = 3.

Each node has at most 3 children and at least 2 children.
Each node then has 1 or 2 keys.

5 20

2510 152 4

Let’s insert 30.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 19 / 30



2-3 TREE INSERT

5 20

2510 152 4 30

Let’s now insert 50.

5

20

2510 152 4

30

50

Now lets delete 15.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 20 / 30



2-3 TREE DELETE

Q. How can we delete 10?

5

20

25102 4

30

50

A. We borrow from a sibling.

5

20

252

4 30

50

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 21 / 30



DELETE WITH MERGE

Q. What if we want to delete 5? Can we borrow?
A. No. Need to merge.

20

252 4

30

50

Notice that this leaves a vacancy in the parent node...need to fix
this by merging or borrowing again.

In this case, merge.

20

252 4

30

50

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 22 / 30



SUMMARY

For a 2-3 Tree or a B-Tree:

insert
If a node overflows we split the node and push up the
middle value. If this causes an overflow repeatedly
correct.

delete
If a node underflows we

Try to borrow a key from a sibling (if the sibling has
more than dm

2 e keys).

Or merge the remaining keys with the parent node. If
this causes an underflow repeatedly correct.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 23 / 30



SPLAY TREES

Binary trees
Not always balanced
And any one operation can be O(n)

Q. So why do we like them?
A. When we do a series of k ≥ n operations, the series of operations

is O(klog(n)).
This means each operation’s amortized cost is O(logn).
Another nice feature, nodes regularly accessed will move towards
the root.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 24 / 30



SPLAYING

Basic idea: When we insert/search for a node x, move it to the root,
balancing as we go.

This is called splaying.

Keep moving x up the tree 2 nodes at a time until it becomes the
root.
Three varieties: zig-zag, zig-zig and zig.
Depends on relationship to parent node p & grandparent node g.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 25 / 30



ZIG

Splay on x.
When the parent node p of x is the root.
We zig.

A B

C

P

X P

X

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 26 / 30



ZIG-ZIG

Splay on x with parent p, grand-parent g:

When the p and x are both left children or both right children.
In other words, g, p and x make a straight line.
We zig-zig.
First rotate about p-g and then rotate about x-p.

P

X

A B

C

P

X

G

D

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 27 / 30



ZIG-ZAG

Splay on x with parent p, grand-parent g:

When one of p and x is a left child and the other is a right child.
In other words, g, p and x make a bend.
We zig-zag.
First rotate about p-x and then rotate about x-g.

P

X

A

B C

P

X

G

D

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 28 / 30



DELETE

We always splay the node being inserted or searched for.

Q. What about delete?

A. We replace the deleted node with the predecessor or successor.

And we splay the parent of the node being deleted.

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 29 / 30



MULTIPLE SPLAY EXAMPLE

Splay on node c:

*image credit: http://digital.cs.usu.edu/ allan/DS/Notes/Ch22.pdf

Anna Bretscher CSCA48 Winter 2015 March 23, 25/26, 2015 30 / 30


