Lecture 4 Review

Find the groupings in the following K-Map

	$\overline{C} \cdot \overline{D} \qquad \overline{C} \cdot D$		C ·D	C ∙D	
A ⋅ B	1	0	Х	1	
Ā·B	Х	0	Х	1	
А∙в	1	Х	1	1	
A ∙B	1	Х	Х	x	

Produce a logical equation for these groupings:

Question #1: alternative

Find the groupings in the following K-Map

	<u>c</u> . <u></u>	\overline{D} $\overline{C} \cdot D$ $C \cdot D$		C ∙D	
A ⋅ B	1	0	Х	1	
А·в	Х	0	Х	1	
А∙В	1	Х	1	1	
A ∙B	1	Х	Х	x	

Produce a logical equation for these groupings:

 \overline{D} + C

Complete the truth table

S	R	Q_{T}	$\overline{Q}_{\mathtt{T}}$	Q _{T+1}	$\overline{Q}_{\mathtt{T+1}}$	
						← Hold
						← Reset ← Set
						← Forbidden

Complete the truth table

	$\overline{Q}_{\mathtt{T+1}}$	Q_{T+1}	$\overline{Q}_{\mathtt{T}}$	Q_{T}	R	S
← Hold	1	0	1	0	0	0
	0	1	0	1	0	0
← Reset	1	0	Х	Х	1	0
← Set	0	1	Х	Х	0	1
← Forbidder	0	0	Х	Х	1	1

What are the output values from Q and Q
 given the following inputs on S, R and C?

Time	S	R	С	Q	Q
i inte	0	0	1		
	1	0	1		
	1	0	0		
	0	0	0		
	0	1	0		
V	0	1	1		

What are the output values from Q and Q
 given the following inputs on S, R and C?

Tim		S	R	С	Q	Q
	16	0	0	1	?	?
		1	0	1	1	0
		1	0	0	1	0
		0	0	0	1	0
		0	1	0	1	0
\	,	0	1	1	0	1

Lecture 5 Review

Assume we want to build a change machine

- We can add either \$0.05 or \$0.10 at a time
- We want to keep track of the current amount in the machine
- We can hold a maximum of \$0.50
- Draw the state diagram

- How many flipflops would you need to implement the following finite state machine (FSM)?
 - 11 states
 - # flip-flops = 「log₂ (# of states)]
 - # flip-flops = 4

Question 2: Barcode Reader

 When scanning UPC barcodes, the laser scanner looks for black and white bars that indicate the start of the

indicate the start of the code.

- If black is read as a 1 and white is read as a 0, the start of the code (from either direction) has a 1010 pattern.
 - Can you create a state machine that detects this pattern?

Step #1: Draw state diagram

Step #2: State Table

- Write state table with Z
- Output Z is determined by the current state.
 - Denotes Moore machine.
- Next step: allocate flipflops values to each state.
 - How many flip-flops will we need for 5 states?
 - # flip-flops = log(# of states)

Present State	Х	Z	Next State
A	0	0	A
A	1	0	В
В	0	0	С
В	1	0	В
С	0	0	A
С	1	0	D
D	0	0	E
D	1	0	В
E	0	1	A
E	1	1	D

Step #3: Flip-Flop Assignment

1

Α

Why not?

1

0

В

 $\left(\right)$

0

0

Е

D

- 3 flip-flops
 needed here.
- Assign states carefully though!
- Can't simply do this:
 - ≻ A = 100
 ≻ B = 011

 - ≻ E = 000

Step #3: Flip-Flop Assignment

- Still has race conditions ($C \rightarrow D, C \rightarrow A$), but is safer.
 - "Safer" is defined according to output behaviour.
 - Sometimes, extra flip-flops are used for extra insurance.

Step #4: Redraw State Table

- From here, we can construct the K-maps for the state logic combinational circuit.
 - Derive equations for each flip-flop value, given the previous values and the input X.

F ₂	F ₁	F ₀	x	Z	F ₂	\mathbf{F}_1	F ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	0	1
0	1	1	0	0	0	0	0
0	1	1	1	0	1	0	1
1	0	1	0	0	1	0	0
1	0	1	1	0	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	1	1	0	1

 Three equations total, plus one more for Z (trivial for Moore machines).

Karnaugh map for F₂:

	$\overline{\mathbf{F}}_{0}\cdot\overline{\mathbf{X}}$	$\overline{\mathbf{F}}_{0} \cdot \mathbf{X}$	$\mathbf{F}_0 \cdot \mathbf{X}$	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	Х	X	1	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	Х	X	X	X
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	1	0	1

$$F_2 = F_1 X + F_2 \overline{F}_0 X + F_2 F_0 \overline{X}$$

Karnaugh map for F₁:

	$\overline{\mathbf{F}}_0 \cdot \overline{\mathbf{X}}$	$\overline{\mathbf{F}}_0 \cdot \mathbf{X}$	$\mathbf{F}_0 \cdot \mathbf{X}$	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	Х	Х	0	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	Х	Х	Х	Х
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	0	0	0

$$F_1 = \overline{F}_2 \overline{F}_1 F_0 \overline{X}$$

Karnaugh map for F_o:

	$\overline{\mathbf{F}}_{0}\cdot\overline{\mathbf{X}}$	$\overline{\mathbf{F}}_0 \cdot \mathbf{X}$	$\mathbf{F}_0 \cdot \mathbf{X}$	$\mathbf{F}_0 \cdot \overline{\mathbf{X}}$
$\overline{\mathbf{F}}_2 \cdot \overline{\mathbf{F}}_1$	0	1	1	1
$\overline{\mathbf{F}}_2 \cdot \mathbf{F}_1$	Х	Х	1	0
$\mathbf{F}_2 \cdot \mathbf{F}_1$	Х	Х	Х	Х
$\mathbf{F}_2 \cdot \overline{\mathbf{F}}_1$	0	1	1	0

$$F_0 = X + \overline{F}_2 \overline{F}_1 F_0$$

Output value Z goes high based on the following output equation:

$$Z = F_2 \overline{F_1} \overline{F_0}$$

- Note: All of these equations would be different, given different flip-flop assignments!
 - Practice alternate assignment for the midterm ③