Lecture 4 Review

Question \#1

- Find the groupings in the following K-Map

	$\overline{\mathbf{C}} \cdot \overline{\mathbf{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$	$\mathbf{C} \cdot \overline{\mathrm{D}}$
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	0	X	1
$\overline{\mathbf{A}} \cdot \mathbf{B}$	X	0	X	1
$\mathbf{A} \cdot \mathbf{B}$	1	X	1	1
$\mathbf{A} \cdot \overline{\mathbf{B}}$	1	X	X	X

- Produce a logical equation for these groupings:

$$
A+\bar{D}
$$

Question \#1: alternative

- Find the groupings in the following K-Map

	$\overline{\mathbf{C}} \cdot \overline{\mathrm{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$	$\mathbf{C} \cdot \overline{\mathrm{D}}$
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	0	X	1
$\overline{\mathbf{A}} \cdot \mathbf{B}$	X	0	X	1
$\mathbf{A} \cdot \mathbf{B}$	1	X	1	1
$\mathbf{A} \cdot \overline{\mathbf{B}}$	1	X	X	X

- Produce a logical equation for these groupings:

$$
\bar{D}+C
$$

Question \#2

- Complete the truth table

S	R	Q_{T}	$\overline{\mathrm{Q}}_{\mathrm{T}}$	$\mathrm{Q}_{\mathrm{T}+1}$	$\overline{\mathrm{Q}}_{\mathrm{T}+1}$

\leftarrow Hold
\leftarrow Reset
\leftarrow Set
\leftarrow Forbidden

Question \#2

- Complete the truth table

\mathbf{S}	\mathbf{R}	$\mathbf{Q}_{\mathbf{T}}$	$\overline{\mathbf{Q}}_{\mathbf{T}}$	$\mathbf{Q}_{\mathbf{T + 1}}$	$\overline{\mathbf{Q}}_{\mathbf{T + 1}}$
0	0	0	1	0	1
0	0	1	0	1	0
0	1	X	X	0	1
1	0	X	X	1	0
1	1	X	X	0	0

Question \#3

- What are the output values from Q and $\overline{\mathrm{Q}}$ given the following inputs on S, R and C ?

	\mathbf{S}	\mathbf{R}	\mathbf{C}	\mathbf{Q}	$\overline{\mathbf{Q}}$
Time	0	0	1		
	1	0	1		
	0	0			
	0	0			
	1	0			
0	1	1			

Question \#3

- What are the output values from Q and $\overline{\mathrm{Q}}$ given the following inputs on S, R and C?

Time	S	R	C	Q	$\overline{\mathbf{Q}}$
I	0	0	1	?	?
	1	0	1	1	0
	1	0	0	1	0
	0	0	0	1	0
	0	1	0	1	0
\downarrow	0	1	1	0	1

Question \#4

Lecture 5 Review

Question \#1

Assume we want to build a change machine

- We can add either \$0.05 or \$0.10 at a time
- We want to keep track of the current amount in the machine
- We can hold a maximum of \$0.50
- Draw the state diagram

Question \#1b

- How many flipflops would you need to implement the following finite state machine
(FSM)?
- 11 states
- \# flip-flops =
$\left\lceil\log _{2}\right.$ (\# of states) \rceil

\# flip-flops = 4

Question 2: Barcode Reader

- When scanning UPC barcodes, the laser scanner looks for black and white bars that
 indicate the start of the code.
- If black is read as a 1 and white is read as a 0, the start of the code (from either direction) has a 1010 pattern.

Can you create a state machine that detects this pattern?

Step \#1: Draw state diagram

Step \#2: State Table

- Write state table with Z
- Output Z is determined by the current state.
- Denotes Moore machine.
- Next step: allocate flipflops values to each state.
- How many flip-flops will we need for 5 states?

Present State	X	\mathbf{z}	Next State
A	0	0	A
A	1	0	B
B	0	0	C
B	1	0	B
C	0	0	A
C	1	0	D
D	0	0	E
D	1	0	B
E	0	1	A
E	1	1	D

$$
\text { \# flip-flops = }\lceil\log (\# \text { of states) }\rceil
$$

Step \#3: Flip-Flop Assignment

- 3 flip-flops needed here.
- Assign states carefully though!
- Can't simply do this:
$>\mathrm{A}=100>\mathrm{B}=011$
$>\mathrm{C}=010 \quad>\mathrm{D}=001$
$>E=000$
Why not?

Step \#3: Flip-Flop Assignment

- Be careful of race conditions.
- Better solution:

$$
\begin{array}{ll}
>A=000 & >B=001 \\
>C=011 & >D=101 \\
>E=100 &
\end{array}
$$

- Still has race conditions $(C \rightarrow D, C \rightarrow A)$, but is safer.
- "Safer" is defined according to output behaviour.
- Sometimes, extra flip-flops are used for extra insurance.

Step \#4: Redraw State Table

- From here, we can construct the K-maps for the state logic combinational circuit.
- Derive equations for each flip-flop value, given the previous values and the input X.

$\mathbf{F}_{\mathbf{2}}$	$\mathbf{F}_{\mathbf{1}}$	\mathbf{F}_{0}	\mathbf{X}	\mathbf{Z}	$\mathbf{F}_{\mathbf{2}}$	$\mathbf{F}_{\mathbf{1}}$	\mathbf{F}_{0}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	0	0
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	0	0	0	1
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	0	1	1
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	1
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	0	0	0	0
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	1	0	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	1	0	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	0	0	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	1

- Three equations total, plus one more for Z (trivial for Moore machines).

Step 5: Circuit design

- Karnaugh map for F_{2} :

$$
F_{2}=F_{1} X+F_{2} \bar{F}_{0} X+F_{2} F_{0} \bar{X}
$$

Step 5: Circuit design

- Karnaugh map for F_{1} :

	$\overline{\mathbf{F}}_{0} \cdot \overline{\mathbf{X}}$	$\overline{\mathbf{F}}_{0} \cdot \mathbf{X}$	$\mathbf{F}_{0} \cdot \mathbf{X}$	$\mathbf{F}_{0} \cdot \overline{\mathbf{X}}$
$\overline{\mathrm{~F}}_{2} \cdot \overline{\mathbf{F}}_{1}$	0	0	0	1
$\overline{\mathbf{F}}_{2} \cdot \mathbf{F}_{1}$	X	X	0	0
$\mathrm{~F}_{2} \cdot \mathbf{F}_{1}$	X	X	X	X
$\mathbf{F}_{2} \cdot \overline{\mathbf{F}}_{1}$	0	0	0	0

$$
F_{1}=\bar{F}_{2} \bar{F}_{1} F_{0} \bar{X}
$$

Step 5: Circuit design

- Karnaugh map for F_{0} :

	$\overline{\mathbf{F}}_{0} \cdot \overline{\mathbf{X}}$	$\overline{\mathbf{F}}_{0} \cdot \mathbf{X}$	$\mathbf{F}_{0} \cdot \mathbf{X}$	$\mathrm{~F}_{0} \cdot \overline{\mathrm{X}}$
$\overline{\mathrm{F}}_{2} \cdot \overline{\mathbf{F}}_{1}$	0	1	1	1
$\overline{\mathrm{~F}}_{2} \cdot \mathrm{~F}_{1}$	X	X	1	0
$\mathrm{~F}_{2} \cdot \mathrm{~F}_{1}$	X	X	X	X
$\mathrm{F}_{2} \cdot \bar{F}_{1}$	0	1	1	0

$$
\mathrm{F}_{0}=\mathrm{X}+\overline{\mathrm{F}}_{2} \bar{F}_{1} \mathrm{~F}_{0}
$$

Step 5: Circuit design

- Output value Z goes high based on the following output equation:

$$
z=F_{2} \bar{F}_{1} \bar{F}_{0}
$$

- Note: All of these equations would be different, given different flip-flop assignments!
- Practice alternate assignment for the midterm ©

