
Week 2 Tutorial:
The Verilog Primer

Understanding Verilog

§ The first thing to realize about Verilog is that it
is not a programming language, but is a
hardware description language (HDL).

§ It’s used to describe what the
circuit layout needs to look like,
once we start designing circuits
that are too large or complicated
to implement with actual chips
and wires.

Basic Verilog Example

§ For instance, this is a simple AND gate:

§ If you had to create a software language that
would allow you to specify an AND gate with
these inputs and outputs, what would the
specification look like?

A
B Y

Basic Verilog Example (cont’d)

§ It would have to have a
name that you could use
to describe the gate.
ú e.g. “and”

§ It would have to allow you to specify the inputs
and outputs of the gate.
ú e.g. and(Y, A, B)
ú Since gates can have many inputs but only one

output, the output is listed first, followed by all of
the gate’s inputs.

A
B Y

The basics of Verilog
§ Verilog is based off the idea that the designer of the

circuit needs a simple way to describe the
components of a circuit in software.

§ There are several basic primitive gates that are built
into Verilog.

ú two-input gates shown here, but multi-input also possible.

Ø and(out,in,in) Ø or(out,in,in) Ø not(out,in)

Ø nand(out,in,in) Ø nor(out,in,in) Ø buf(out,in)

Ø xor(out,in,in) Ø xnor(out,in,in)

Creating modules

§ Using built-in gates is one thing, but what if
you want to create logical units of your own?

§ Modules help to specify a combination of gates
with a set of overall input and output signals.
ú Specified similarly to C and

Python functions.
ú Less like functions though,

and more like specifying a
part of a car.

Module Example

§ Making an XOR gate.
ú An XOR gate can be

represented with the
following logic statement:

ú How would we describe a logic equation like this in
a hardware design language?

A
B Y

Y = A·B + A·B

Module Example (cont’d)
§ Not to hard to represent it in logic gates.

§ How would you specify the AND and OR gates?

A
B
A
B

Y

and(__,B,__)
and(__,A,__)
or(Y,__,__)

Module Example (cont’d)

§ Wires that are used internally in the circuit to
connect components together are declared
and labeled using the wire keyword.
ú Label the output of each gate, so that you can refer

to it when specifying the inputs of other gates.

A
B
A
B

Y
and(__,B,__)
and(__,A,__)
or(Y,__,__)

Module Example (cont’d)

§ Note: the wire names are not built in or named
according to any convention. The names of the
wires is at the discretion of the designer.

A
B
A
B

Y

not_a

not_b

b_not_a

a_not_b

Module Example (cont’d)
§ The result is

the circuit
description
on the right.

§ The order of
the five lines
at the bottom
doesn’t matter.
ú Remember: Verilog is a hardware description, not a

programming language, so the result is the same.

wire not_a, not_b
wire a_not_b, b_not_a

and(b_not_a, B, not_a)
and(a_not_b, A, not_b)
or(Y, b_not_a, a_not_b)
not(not_a, A)
not(not_b, B)

Module Example (cont’d)

§ The module is
nearly done!

§ Only missing
three things:
1. Semicolons at

the end of
each line.

2. Statements
describing the
circuit’s input
and outputs.

input A, B;
output Y;

wire not_a, not_b;
wire a_not_b, b_not_a;

and(b_not_a, B, not_a);
and(a_not_b, A, not_b);
or(Y, b_not_a, a_not_b);
not(not_a, A);
not(not_b, B);

Module Example (cont’d)
§ Last missing

feature:
3. Keywords

laying out
the start
and end of
the module,
as well as
the input
and output
signals.

module xor_gate(A, B, Y);
input A, B;
output Y;

wire not_a, not_b;
wire a_not_b, b_not_a;

and(b_not_a, B, not_a);
and(a_not_b, A, not_b);
or(Y, b_not_a, a_not_b);
not(not_a, A);
not(not_b, B);

endmodule

Module review

§ Creating a module follows a few simple steps:
1. Declare the module (along with its name, its input

and output signals, and where it ends).
2. Specify which of the module’s external signals are

inputs and which are outputs.
3. Provide labels for the internal wires that will be

needed in the circuit.
4. Specify the components of the circuit and how

they’re connected together.

A note about Step #4
§ There are alternate ways to express the

internal logic of a module.
ú assign statements.

and(Y, A, B); assign Y = A & B;

or(Y, A, B); assign Y = A | B;

not(Y, A); assign Y = ~A;

Verilog operators

§ C and Python have operators, such as:
ú +, -, <, ==, etc.

§ Verilog operators
ú “Bitwise” operations

take multi-bit input
values, and perform
the operation on
the corresponding
bits of each value.

ú More operators exist,
but this is enough for now.

Operator Operation

~ Bitwise NOT (1’s complement)

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

! NOT

&& AND

|| OR

== Test equality

Module Example, revisited

§ This also works, but can be easier to express.

module xor_gate(A, B, Y);
input A, B;
output Y;

assign Y = A & ~B | B & ~A;
endmodule

Using modules

§ Once a module is created, it can be used as a
component of other modules that you create.
ú Example: half adder circuit.
ú C = X AND Y S = X XOR Y

module half_adder(X, Y, C, S);
input X, Y;
output C, S;

and(C, X, Y);
xor_gate(S, X, Y);

endmodule

Making a mux in Verilog

module mux(X, Y, S, M);
input X, Y, S;
output M;

assign M = X & ~S | Y & S;
endmodule

Y
M

X

S

0

1M = X·S + Y·S

3-bit mux in Verilog

§ How are multiple inputs
handled by Verilog?
ú e.g. 3-input multiplexers.

§ Use square bracket characters to indicate a
range of values for that signal.

Y
M

X

S

n

n
n0

1

module mux(X, Y, S, M);
input [2:0] X, Y; // 3-bit input
input S; // 1-bit input
output [2:0] M; // 3-bit output
...

3-bit mux in Verilog

§ Continuing 3-bit mux example:

module mux(X, Y, S, M);
input [2:0] X, Y; // 3-bit input
input S; // 1-bit input
output [2:0] M; // 3-bit output

assign M[0] = X[0] & ~S | Y[0] & S;
assign M[1] = X[1] & ~S | Y[1] & S;
assign M[2] = X[2] & ~S | Y[2] & S;

endmodule

A note about ranges

§ When indicating that a labeled signal represents
several input wires, the notation for the range
can vary:
ú e.g. input [2:0] X, Y; or

input [0:2] X, Y;
§ Both are legal; the first means that the first bits

of the inputs are referred to as X[2] and Y[2].
The second means that the first bits of the
inputs are referred to as X[0] and Y[0].

