
Lecture 11:
Wrap-up and
Farewell

We’re Almost Done

§ We’ve covered
ú Arithmetic and logical operations
ú Branches for loops and conditions
ú Memory
ú Functions
ú Stack
ú Calling conventions

Talking To Hardware

Input and Output

§ There is a world
outside the CPU
ú VGA
ú Hard drives
ú Keyboard, mouse
ú Network cards
ú etc.

§ How do we communicate with this hardware?
§ How do we do I/O (Input/Output)?

Memory Mapped I/O

§ Certain memory addressed
don’t go to RAM.

§ Instead, they go to device
registers.
ú Write to control a device.
ú Read to get data or device status.

§ Often works with polling:
ú Example: to know if an operation

is finished, we read memory in a
loop until status is “finished”.

CPU

RAM

Keyboard

VGA

Interrupts

§ Rather than polling, devices can interrupt the
processor to signal important status
ú Operation completed, error, and so on.

§ Interrupts are special signals that go from
devices to the CPU.

§ When an interrupt occurs, the CPU stops
what it is doing and jumps to an interrupt
handler routine
ú This routine handles the interrupt and returns to

the original code.

Handling Interrupts
§ Polled handling (not related to previous polling):

ú CPU branches to generic handler code for all
exceptions.

ú Handler checks the cause of the exception and
branches to specific code depending on the type of
exception.

ú This is what MIPS uses.
§ Vectored handling:

ú We first assign a unique id (number) for each device
and interrupt/exception type (example from 0 to 255).

ú We set up a table containing the address of the
specific interrupt handler for every possible id.

ú On interrupt with type X, the CPU gets the address
from row X of the table and branches to the address.

ú This is what x86 uses.

Exceptions

§ An exception is like an
interrupt that comes
from inside the CPU.
ú The mechanism is

similar, the difference is
semantic.

§ Reasons for interrupts/exceptions:
ú Device I/O (interrupt)
ú Invalid instruction (can’t decode!)
ú Arithmetic overflow (add with overflow).
ú Divide by zero.
ú System calls (also called traps)

exceptions

MIPS Interrupt Handling
§ MIPS has polled interrupt handling: the processor jumps to

exception handler code, based on the value in the cause
register (see table).

§ If the original program
can resume afterwards,
this interrupt handler
returns to program by
calling rfe instruction.

§ Alternatively, the OS
terminates the program.
ú For example, dump the

contents of the stack to
disk or screen to help debugging.

0 (INT) external interrupt.
4 (ADDRL) address error exception (load or fetch)
5 (ADDRS) address error exception (store).
6 (IBUS) bus error on instruction fetch.
7 (DBUS) bus error on data fetch
8 (Syscall) Syscall exception
9 (BKPT) Breakpoint exception
10 (RI) Reserved Instruction exception
12 (OVF) Arithmetic overflow exception

Coordination

§ Talking with hardware is a lot of work.
ú What if you change your hardware, do you need

to change every program?
ú Should we duplicate code (e.g., for handling

keyboard) in every program that needs it?

§ Who will manage all the different programs
on the computer and offer them I/O services?

§ We need some sort of master control
program to coordinate all this...

The Operating System

The Operating System

§ The operating system is the program that
manages all the other programs.
ú Loading, running, and stopping programs.
ú Running multiple programs simultaneously.
ú It abstracts hardware and I/O, and offers services.

§ Programs invoke the OS to do things like:
ú Read/write from files.
ú Write to screen.
ú Run other programs

§ Invoking the OS is done via system calls or traps.

Learn more

in C69

Instruction Function Syntax

syscall 001100
(R-type) I

§ Trap instructions send
system calls to the
operating system
ú e.g. interacting with the

user, and exiting the
program.

ú Trap code goes in $v0
§ These are services

offered by SPIM.

SPIM Service
Trap
Code Input/Output

print_int 1 $a0 is int to print

print_string 4 $a0 is address of ASCIIZ string
to print

read_int 5 $v0 is int read

read_string 8 $a0 is address of buffer
$a1 is buffer size in bytes

exit 10

open_file 13

$a0 is address of ASCIIZ string
containing file name
$a1 is flag
$a2 is mode
$v0 is file descriptor

read_from_file 14

$a0 is file descriptor
$a1 is address of input buffer
$a2 is number of characters to
read

write_to_file 15

$a0 is file descriptor
$a1 is address of output buffer
$a2 is number of characters to
write

close_file 16 $a0 is file descriptor

Example

.data
var1: .word 10
str1: .ascii "Hello World"

.text
main: li $v0, 1 # print the number stored in var1

la $t0, var1
lw $a0, 0($t0)
syscall

li $v0, 4 # print the string stored in str1
la $a0, str1
syscall

end: li $v0, 10 # exit the running program
syscall

One More Thing

§ Calling future TAs!
ú Want to TA B58?
ú Looking for Verilog experience (small candidate pool)
ú You can help improve/shape the future of the course.
ú Ask your current TAs what they think!

§ Course Evaluations
ú They are anonymous.
ú I do actually read them.
ú I do actually care.
ú They do actually make an impact.
ú No, I won’t bribe you

Cake Courtesy of Sophie
Harrington

WE ARE DONE!

Assembly Language

Processors
Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors

33

Given enough silicon,
phosphorus and
boron, you are now
able to build a
computer!

Good luck!

