Lecture 11:
Wrap-up and
Farewell

We’re Almost Done

= \We've covered

= Arithmetic and logical operations
= Branches for loops and conditions
= Memory

= Functions
= Stack
= Calling conventions

Talking To Hardware

Input and Output

* There is a world
outside the CPU
= VGA
> Hard drives
= Keyboard, mouse

= Network cards

- etc.

= How do we communicate with this hardware?

Memory Mapped I/0

= Certain memory addressed

dont go to RAM. CPU
= |nstead, they go to device

registers.

= Write to control a device.
= Read to get data or device status.
= Often works with polling:

= Example: to know if an operation
is finished, we read memory in a Keyboard
loop until status is “finished”.

Interrupts

= Rather than polling, devices can interrupt the
processor to signal important status

Operation completed, error, and so on.

= Interrupts are special signals that go from
devices to the CPU.

= When an interrupt occurs, the CPU stops
what it is doing and jumps to an interrupt
handler routine

This routine handles the interrupt and returns to
the original code.

Handling Interrupts

= Polled handling (not related to previous polling):

CPU branches to generic handler code for all
exceptions.

Handler checks the cause of the exception and
branches to specific code depending on the type of
exception.

This is what MIPS uses.

= Vectored handling:

We first assign a unique id (number) for each device
and interrupt/exception type (example from o to 255).

We set up a table containing the address of the
specific interrupt handler for every possible id.

On interrupt with type X, the CPU gets the address
from row X of the table and branches to the address.

This is what x86 uses.

Exceptions

= An exception is like an
interrupt that comes
from inside the CPU.

= The mechanism is

similar, the difference is
semantic.

= Reasons for interrupts/exceptions:
= Device |/O (interrupt)
= Invalid instruction (can’t decode!)
- Arithmetic overflow (add with overflow).

exceptions

MIPS Interrupt Handling

= MIPS has polled interrupt handling: the processor jumps to
exception handler code, based on the value in the cause
register (see table).

" Ifthe orlglnal program o (INT) external interrupt.

CUNCV QI NCIWVEIE , (ADDRL) address error exception (load or fetch)
this interrupt handler 5 (ADDRS) | address error exception (store).
returns to program by 6 (IBUS) bus error on instruction fetch.

1l N g=Ra[d(Vadle]s M 7 (DBUS) | bus error on data fetch

- 8 (Syscall) Syscall i
= Alternatively, the OS (Syscall) Syscall exception
terminates the program.

9 (BKPT) Breakpoint exception

10 (RI) Reserved Instruction exception

For example, dump the 12 (OVF) Arithmetic overflow exception
contents of the stack to

disk or screen to help debugging.

Coordination

= Talking with hardware is a lot of work.

What if you change your hardware, do you need
to change every program?

Should we duplicate code (e.g., for handling
keyboard) in every program that needs it?

= Who will manage all the different programs
on the computer and offer them 1/O services?

» We need some sort of master control
program to coordinate all this...

The Operating System

The Operating System

* The operating system is the program that
manages all the other programs.
= Loading, running, and stopping programs.
= Running multiple programs simultaneously.
It abstracts hardware and 1/O, and offers services.

= Programs invoke the OS to do things like:
= Read/write from files.

= Write to screen.
© Run other programs

001100

syscall (R-type) print_int $ao is int to print

$ao is address of ASCIIZ string

print_string -

= Trap instructions send
system calls to the read_int svois int read
Ope rating System read_string $ao is address of buffer

$a1 is buffer size in bytes

e.g. interacting with the
user, and exiting the _ _
$ao is address of ASCIIZ string

program. containing file name
Trap code goes in $vo open_file sa1 is flag

$a2 is mode

= These are services $vo is file descriptor

exit

sao is file descriptor
$a1 is address of input buffer

offered by SPIM.

read_from_file

$a2 is number of characters to
p—— e\ read

sao is file descriptor

$a1 is address of output buffer
$a2 is number of characters to
write

write_to_file

close_file s$ao is file descriptor

Example

.data

varl: .word 10

strl: .ascii "Hello World"

.text

main: 1i $vO0, 1 # print the number stored in wvarl
la $t0, wvarl
lw $a0, 0($t0)
syscall
1i $v0, 4 # print the string stored in strl
la $a0, strl
syscall

end: 1i sv0, 10 # exit the running program
syscall

One More Thing

= Calling future TAs!
= Want to TA B58?
= Looking for Verilog experience (small candidate pool)
= You can help improve/shape the future of the course.
= Ask your current TAs what they think!

= Course Evaluations

= They are anonymous.
= | do actually read them.

= | do actually care.

WE ARE DONE!

Circuits

Gates
[Transistors]

Given enough silicon,
phosphorus and
boron, you are now
able to build a
computer!

Good luck!

Thank you all!

