
Lecture 10:
Assembly
Programming
Part 3

Assembly Test
§ July 31, in class

ú 1 hour
ú 5% of final mark (term test was 20%)
ú Just focusing on assembly
ú Pen & paper (like exam)

Last Week
§ Memory access:

ú Arrays
ú Structs
ú Alignment
ú Segments: .data , .text

§ Functions:
ú Parameters
ú Stack
ú Return address
ú Calling conventions

.data
v1: .word 52
a1: .space 100

.text
la $t0, a1
lw $t2, 16($t0)

addi $sp, $sp, -4
sw $t2, 0($sp)

jal SOME_FUNCTION

lw $t5, 0($sp)
addi $sp, $sp, 4

Warmup

§ This functions has two parameters and two
returned values

def sum_prod(a, b):
s = a + b
p = a * b
return (s, p)

Calling sum_prod

§ Given variables A, B, get sum_prod(A,B)
§ Steps:

ú Declare variables
ú Load into registers
ú Push onto stack
ú Call function
ú Pop results from stack into registers

Calling sum_prod: declare vars
.data
A: .word 7
B: .word 5

Calling sum_prod: load values
.data
A: .word 7
B: .word 5

.text
main: la $t0, A # $t0 = address of A

lw $t1, 0($t0) # $t1 = value of A
la $t2, B # $t2 = address of B
lw $t3, 0($t2) # $t2 = value of B

Calling sum_prod: push and call
.data
A: .word 7
B: .word 5

.text
main: la $t0, A # $t0 = address of A

lw $t1, 0($t0) # $t1 = value of A
la $t2, B # $t2 = address of B
lw $t3, 0($t2) # $t2 = value of B

addi $sp, $sp, -4 # push A onto the stack
sw $t1, 0($sp)
addi $sp, $sp, -4 # push B onto the stack
sw $t3, 0($sp)
jal sumprod # “call" the sign function

Calling sum_prod: pop results
.data
A: .word 7
B: .word 5

.text
main: la $t0, A # $t0 = address of A

lw $t1, 0($t0) # $t1 = value of A
la $t2, B # $t2 = address of B
lw $t3, 0($t2) # $t3 = value of B

addi $sp, $sp, -4 # push A onto the stack
sw $t1, 0($sp)
addi $sp, $sp, -4 # push B onto the stack
sw $t3, 0($sp)
jal sum_prod # “call" the sign function
lw $t5, 0($sp) # pop the sum A+B off the stack
addi $sp, $sp, 4
lw $t6, 0($sp) # pop the product A*B off stack
addi $sp, $sp, 4

The Stack is FILO / LIFO

§ First in, last out.
§ Equivalently:

Last in, first out (LIFO).

§ If you push A, B, C (in
this order)…

§ …when you pop you get
C, B, A

sum_prod: implementation

§ To implement sum_prod
ú (decide on registers)
ú Pop arguments off stack
ú Do the computation
ú Push return values
ú Return to caller

Implement sum_prod: arguments
sum_prod: (A, B) -> (A+B, A*B)
$t0=A, $t1=B, $t3=A+B, $t4=A*B

sum_prod: lw $t1, 0($sp) # pop B off the top of
addi $sp, $sp, 4 # the stack first
lw $t0, 0($sp) # now we pop A
addi $sp, $sp, 4

Implement sum_prod: compute
sum_prod: (A, B) -> (A+B, A*B)
$t0=A, $t1=B, $t3=A+B, $t4=A*B

sum_prod: lw $t1, 0($sp) # pop B off the top of
addi $sp, $sp, 4 # the stack first
lw $t0, 0($sp) # now we pop A
addi $sp, $sp, 4

add $t3, $t0, $t1 # $t3 = A+B
mult $t0, $t1 # compute A*B
mflo $t4 # store the result in $t4

#(note we are assuming 32 bit result here!)

Implement sum_prod: return
sum_prod: (A, B) -> (A+B, A*B)
$t0=A, $t1=B, $t3=A+B, $t4=A*B

sum_prod: lw $t1, 0($sp) # pop B off the top of
addi $sp, $sp, 4 # the stack first
lw $t0, 0($sp) # now we pop A
addi $sp, $sp, 4

add $t3, $t0, $t1 # $t3 = A+B
mult $t0, $t1 # compute A*B
mflo $t4 # store the result in $t4

#(note we are assuming 32 bit result here!)

end: addi $sp, $sp, -4 # first push A*B on stack
sw $t4, 0($sp) # so it comes out second
addi $sp, $sp, -4 # now push A+B onto stack
sw $t3, 0($sp) # so it comes out first

jr $ra # jump back to caller

Functions Calling Functions

Calling From Inside Function

§ Assume we already have max(a,b)
§ We want to implement max3(a,b,c)
§ Easy, just call max twice:

ú tmp = max(a, b)
ú res = max(tmp, c)
ú return res

§ max pseudo code:
ú pop a, b into $t0, $t1
ú If $t0 > $t1 set $t2 = $t0 else $t2 = $t1
ú Push $t2 onto stack

max(a,b)

max: lw $t1, 0($sp) # first pop b from stack
addi $sp, $sp, 4
lw $t0, 0($sp) # now pop a from stack
addi $sp, $sp, 4

input values are in $t0, $t1, output will be in $t2
ble $t0,$t1, else # if a<=b we jump to else
add $t2, $t0, $zero # a>b so set $t2 to $t0
j end

else: add $t2,$t1,$zero # a<=b so set $t2 to $t1
end: addi $sp, $sp, -4 # push result onto stack

sw $t2, 0($sp)
jr $ra # jump back to caller

max3(a,b,c) in “Assembly”

§ Pop a, b, c into registers $t0, $t1, $t2
§ Push $t0, $t1 onto stack
§ Call max (jal max)
§ Pop partial max into $t3
§ Push $t2, $t3 onto stack
§ Call max again
§ Pop final max into $t4
§ Push $t4 final max
§ Return to caller (jr $ra)

Problem 1:
max uses $t2

internally

Problem 2:
$ra was

overwritten by
jal max

Saving $ra

§ When calling function f from inside
function g we execute jal function f

§ This overwrites return address $ra
§ We need to preserve it, but where?
§ Stack to the rescue:

ú Push old value of $ra onto the stack.
ú Push arguments for f
ú Call f
ú Pop return value
ú Pop old value of $ra

b

a

old $ra

max3(a,b,c) in “Assembly”
§ Pop a, b, c into registers $t0, $t1, $t2
§ Push $ra
§ Push a, b onto stack
§ Call max (jal max)
§ Pop partial max into $t3
§ Pop $ra
§ Push $ra
§ Push $t2, $t3 onto stack
§ Call max again
§ Pop final max into $t4
§ Pop $ra
§ Push $t4 final max
§ Return to caller (jr $ra)

This is a little
silly.

max3(a,b,c) in “Assembly”
§ Pop a, b, c into registers $t0, $t1, $t2
§ Push $ra
§ Push a, b onto stack
§ Call max (jal max)
§ Pop partial max into $t3
§ Push $t2, $t3 onto stack
§ Call max again
§ Pop final max into $t4
§ Pop $ra
§ Push $t4 final max
§ Return to caller (jr $ra)

If we need to call
another function:
push $ra to the
stack at the
beginning of the
function, and pop
at the end

Wait a Minute…

§ We also need to preserve $t2 since it holds c

§ Push it on stack along with $ra and pop it
after the function returns

b

a

old $t2

old $ra

max3(a,b,c) in “Assembly”
§ Pop a, b, c into registers $t0, $t1, $t2
§ Push $ra
§ Push $t2 (we need to pop $t2 before $ra!)
§ Push a, b onto stack
§ Call max (jal max)
§ Pop partial max into $t3
§ Pop $t2
§ Push $t2, $t3 onto stack
§ Call max again
§ Pop final max into $t4
§ Pop $ra
§ Push $t4 final max
§ Return to caller (jr $ra)

Preserving Register Values

§ We’ve already demonstrated why we’d need
to push $ra and $t2 onto the stack when
calling function from another function.

§ What about the other registers?
§ How do we know that a function we called

didn’t overwrite registers that we were using?
ú Remember there is only one register file!

Need to know about the caller vs. callee calling conventions.

Calling Conventions

§ We’ve seen at least two options on how to
implement function calls:
ú Use $a0 - $a3 , $v0 and $v1, and so on.
ú Push on stack

§ There are many other variants.
ú For example, should caller or callee pop variables?
ú Or using registers instead of stack.

§ These are called calling conventions.

Calling Conventions

§ Caller vs. Callee
ú Caller is the function calling another function.
ú Callee is the function being called.

§ We separate registers into:
ú Caller-Saved registers ($t0-$t9)
 Also called “unsaved (or temporary) registers”.

ú Callee-Saved registers ($s0-$s7)
 Also called “saved registers”

A function can be both a caller
and a callee (e.g., recursion).

Register Saving Conventions

§ Caller-Saved registers
ú Registers 8-15, 24-25 ($t0-$t9): temporaries
ú Registers that the caller should save to the stack

before calling a function. If they don’t save them,
there is no guarantee the contents of these
registers will not be clobbered.

§ Callee-Saved registers
ú Registers 16-23 ($s0-$s7): saved temporaries
ú It is the responsibility of the callee to save these registers

and later restore them, if it’s going to modify them.
ú Push them to the stack first thing in your function body and

restore them just before you return!

Push them to the stack just before
you call another function and
restore them immediately after.

Caller-Saved ($t0-$t9) vs.
Callee-Saved ($s0-$s7) Registers

§ Caller code
ú Using $t0-$t9 and you care

for their values?
 Push them to the stack just

before you make a function call
and restore them immediately
after the calling site.

 If you don’t care about the
value, no need to do anything.

ú Using $s0-$s7?
 No action needed. It is the

responsibility of the callee to
ensure these registers are not
modified.

§ Callee code
ú Using $t0-$t9?

 No action needed. It it the
responsibility of the caller to
ensure there registers are not
modified.

ú Using $s0-s7?
 You need to ensure these

registers are not modified.
 If you plan to modify them,

push them to the stack in the
beginning of your function and
restore them in the very end
just before the jr $ra.

If a function is both a caller and a callee, it will fall under both categories.

Register Saving Conventions

§ THESE ARE ONLY CONVENTIONS!!!!
ú There’s nothing to enforce these rules
ú Not everyone actually agrees on what the convention

should be
ú Not everyone follows the rules
ú Don’t assume convention is being followed unless

you’re explicitly told
ú If in doubt, save it to the stack

Break

Recursion in Assembly

Example: factorial(int n)

Basic pseudocode for recursive factorial:

ú Base Case (n == 0)
 return 1

ú Get factorial(n-1)
 Store result in “product”

ú Multiply product by n
 Store in “result”

ú Return result

Recursive programs
§ How do we handle

recursive programs?
ú Still needs base case

and recursive step, as
with other languages.

ú Main difference: function is both caller and callee
ú So what?
ú Just make sure to preserve $ra and saved registers

as we said

int factorial (int x) {
if (x==0)

return 1;
else

return x*fact(x-1);
}

Recursive programs

§ Solution: the stack!
ú Before recursive call,

store the register
values that you use
onto the stack, and
restore them when you come back to that point.

ú Don’t forget to store $ra as one of those values, or
else the program will loop forever!

int factorial (int x) {
if (x==0)

return 1;
else

return x*fact(x-1);
}

Factorial solution

§ Steps to perform:
ú Load x from the stack.
ú Check if x is zero:

 If x==0, push 1 onto
the stack and return to the calling program.

 If x!=0, push x-1 onto the stack and call factorial
again (i.e. jump to the beginning of the code).

 After recursive call, pop result off of stack and
multiply that value by x.

 Push result onto stack, and return to calling program.

int fact (int x) {
if (x==0)

return 1;
else

return x*fact(x-1);
}

factorial(int n)
§ Load n off the stack

ú Store in $t0
§ If $t0 == 0,

ú Push 1 onto stack
ú Return to caller

§ If $t0 != 0,
ú Calculate n-1
ú Store and $ra onto stack
ú Push n-1 on $t0 to stack
ú Call factorial

 …time passes…
ú Pop the result of factorial (n-1) from stack, store in $t2

 Also shrink stack (pop argument)
ú Restore $ra and $t0 from stack
ú Multiply factorial (n-1) and n
ú Pop result onto stack
ú Return to calling program

ú Base Case (n == 0)
 return 1

ú Get factorial(n-1)
 Store result in “product”

ú Multiply product by n
 Store in “result”

ú Return result

n à $t0
n-1 à $t1
fact(n-1) à $t2

Translated recursive program
(part 1)

main: addi $t0, $zero, 10 # call fact(10)
addi $sp, $sp, -4 # by putting 10
sw $t0, 0($sp) # onto stack
jal factorial # result will be
... # on the stack

factorial: lw $t0, 0($sp) # get x from stack
bne $t0, $zero, rec # base case?

base: addi $t1, $zero, 1 # put return value
addi $sp, $sp, -4 # onto stack
sw $t1, 0($sp) #
jr $ra # return to caller

rec: addi $t1, $t0, -1 # x--
addi $sp, $sp, -4 # save $ra value
sw $ra, 0($sp) # onto stack
addi $sp, $sp, -4 # put x-1 on stack
sw $t1, 0($sp) # for rec call
jal factorial # recursive call

Translated recursive program
(part 2)

§ Remember: jal always stores the next address
location into $ra, and jr returns to that address.

(continued from part 1 – returning from recursive call)
lw $t2, 0($sp) # get return value
addi $sp, $sp, 8 # from stack
lw $ra, 0($sp) # restore return
addi $sp, $sp, 4 # address value
lw $t0, 0($sp) # restore x value

for this call
mult $t0, $t2 # x*fact(x-1)
mflo $v0 # fetch product
addi $sp, $sp, -4 # push n! result
sw $v0, 0($sp) # onto stack
jr $ra # return to caller

Factorial stack view

x:10

Initial call to
factorial

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

x:7

After 3rd call to
factorial

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

.

.

.

$ra #10

x:0

Recursion
reaches base

case call

x:10

$ra #1

x:9

$ra #2

x:8

$ra #3

.

.

.

$ra #10

ret:1

Base case
returns 1 on

the stack

ret:10!

Recursion
returns to
top level

The Stack Frame

Local Variables

§ Sometimes you just need local variables
ú You ran out of registers.
ú Or you want a local array.
ú You are compiling C code and the programmer is

using many local variables.
§ Local variables are local to the function.
§ Where should I put them? On the stack!

ú Say the function needs 24 bytes for local variables
ú Just do addi $sp,$sp,-24
ú Before returning, restore $sp to how it was:

addi $sp,$sp,24

The Stack Frame

§ The stack frame is an area on the stack
dedicated to each function.

§ On the stack frame we store:
ú Arguments (stored by the caller)
ú Saved return address
ú Callee-saved registers ($s0-$s7, $fp)
ú Local variables
ú Caller-saved registers ($t0-$t9)

§ Frame pointer $fp helps the function know what
is where since we modify $sp.
ú Functions execute add $fp, $zero, $sp at entry

The Stack Frame

§ Example:
ú main called f
ú f called g

§ At entry:
ú push $ra
ú Push $fp
ú add $fp, $zero, $sp

§ To return:
ú lw $ra, 0($fp)
ú Restore $sp
ú jr $ra

g local variables

g saved registers

g return address
(back into f)

g arguments

f local variables

f saved registers

f return address

f arguments

$fp

stack frame
of function f

stack frame
of function g

Review: Some Optimizations

§ We started with always using the stack.
ú Do this unless we tell you otherwise!

§ Changing the calling convention allows some
nice optimizations:
ú Use saved registers wisely.
ú Pass arguments and return values in registers.
ú Keep arguments on stack, don’t pop.

§ Compilers can do even more:
ú Convert recursive calls to loops.
ú “Inlining” functions: move callee code into caller.

Almost Done!

§ Left overs:
ú Interrupts
ú System calls
ú Odds and ends.
ú More dank memes.

