
Lecture 9:
Assembly
Programming
Part 2

Last Week

§ Assembly basics
ú QtSpim

§ ALU operations
ú Arithmetic
ú Logical
ú Shift

§ Branches (conditions
and loops)

§ Pseudoinstructions

addi $t6, $zero, 10
add $t6, $t6, $t1
add $t6, $t6, $t1
mult $t0, $t0
mflo $t4
add $t4, $t4, $t6

main: add $t0, $0, $0
addi $t1, $0, 100

LOOP : beq $t0, $t1, END
addi $t0, $t0, 1
j LOOP

END:

Homework

§ Fibonacci sequence:
ú How would you convert this into assembly?

int n = 10;
int f1 = 1, f2 = 1;

while (n != 0) {
f1 = f1 + f2;
f2 = f1 – f2;
n = n – 1;

}
result is f1

Assembly code example
§ Fibonacci sequence in assembly code:

fib.asm
register usage: $t3=n, $t4=f1, $t5=f2

FIB: addi $t3, $zero, 10 # initialize n=10

addi $t4, $zero, 1 # initialize f1=1
addi $t5, $zero, 1 # initialize f2=-1

LOOP: beq $t3, $zero, END # done loop if n==0
add $t4, $t4, $t5 # f1 = f1 + f2
sub $t5, $t4, $t5 # f2 = f1 - f2
addi $t3, $t3, -1 # n = n – 1
j LOOP # repeat until done

END: # result in f1 = $4

Making sense of assembly code

§ Assembly language looks intimidating
because the programs involve a lot of code.
ú No worse than your CSCA08 assignments would

look to the untrained eye!

§ The key to reading and designing assembly
code is recognizing portions of code that
represent higher-level operations that you’re
familiar with.

Interacting With Memory

Interacting with memory
§ All of the previous instructions perform

operations on registers and immediate values.
ú What about memory?

§ All programs must fetch values from memory
into registers, operate on them, and then store
the values back into memory.

§ Memory operations are I-type, with the form:

lw $t0, 12($s0)Load or store

Local data register

Register storing
address of data
value in memory

Offset from memory address

Loads vs. Stores

§ The terms “load” and “store” are seen from the
perspective of the processor, looking at memory.

§ Loads are read operations.
ú We load (i.e., read) from memory.
ú We load a value from a memory address into a

register.
§ Stores are write operations.

ú We store (i.e., write) a data value from a register to a
memory address.

ú Store instructions do not have a destination register,
and therefore do not write to the register file.

Memory Instructions in MIPS assembly

? ? ? $t, i($s)

l for load or
s for store

b for byte,
h for half-word,
w for word

When loading a byte or a half-word
you can choose u for unsigned.
Leave it blank as for all other cases.

Specifies the
location to access as
MEM[$s + SE(i)]

Destination register
for loads, source
register for stores.

Load & store instructions
Instruction Opcode/Function Syntax Operation

lb 100000 $t, i ($s) $t = SE (MEM [$s + i]:1)

lbu 100100 $t, i ($s) $t = ZE (MEM [$s + i]:1)

lh 100001 $t, i ($s) $t = SE (MEM [$s + i]:2)

lhu 100101 $t, i ($s) $t = ZE (MEM [$s + i]:2)

lw 100011 $t, i ($s) $t = MEM [$s + i]:4

sb 101000 $t, i ($s) MEM [$s + i]:1 = LB ($t)

sh 101001 $t, i ($s) MEM [$s + i]:2 = LH ($t)

sw 101011 $t, i ($s) MEM [$s + i]:4 = $t

§ “b”, “h” and “w” correspond to “byte”, “half word” and
“word”, indicating the length of the data.

§ “SE” stands for “sign extend”, “ZE” stands for “zero extend”.

Memory Instructions in MIPS assembly

§ Load & store instructions are I-type operations:

§ …which are written in this format:

opcode rs rt immediate

l
h

u

$t, i($s)
s

b

w

Load or
store Size of

value

Signed or
unsigned

Alignment Requirements

§ Misaligned memory accesses result in errors.
ú Causes an exception (more on that, later)

§ Word accesses (i.e., addresses specified in a
lw or sw instruction) should be word-aligned
(divisible by 4).

§ Half-word accesses should only involve half-
word aligned addresses (i.e., even addresses).

§ No constraints for byte accesses.

Alignment Examples

§ Access to half-word at address 10 is aligned

§ Access to word at address 10 is unaligned

§ Access to word at address 8 is aligned

Address: 8 9 10 11 12 13 14

Address: 8 9 10 11 12 13 14

Address: 8 9 10 11 12 13 14

More Pseudo-instructions
Instruction Opcode/Function Syntax Operation

la N/A $t, label $t = address(MEM [label])

li N/A $t, i $t = i

§ Remember: these aren’t really MIPS instructions
§ But they make things way easier
§ Really just simplifications of multiple instructions:

ú lui followed by ori. $at used for temporary values

§ Also: move, bge , ble, bgt, seq ...

Labeling Data Storage
§ Labeled data storage, also known as variables
§ At beginning of program, create labels for memory

locations that are used to store values.
§ Always in form: label .type value(s)

create a single integer variable with initial value 3
var1: .word 3

create a 2-element character array with elements
initialized to a and b
array1: .byte 'a','b'

allocate 40 consecutive bytes, with uninitialized
storage. Could be used as a 40-element character
array, or a 10-element integer array.
array2: .space 40

Memory Sections & syntax
§ Programs are divided into two

main sections in memory:
§ .data - indicates the start of

the data values section (typically
at beginning of program).

§ .text - indicates the start of
the program instruction section.

§ Within the instruction section are
program labels and branch
addresses.
ú main: the initial line to run when

executing the program.
ú Other labels are determined by the

function names that you use, etc.

.data

.text

main:

Arrays and Structs

Arrays!

§ A sequence of data elements which is contiguous
(i.e. no spaces) in memory.

§ B is an array of 9 bytes starting at address 8:

§ H is an array of 4 half-words starting at address 8:

Address: 8 9 10 11 12 13 14 15 16
B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Address: 8 9 10 11 12 13 14 15
H[0] H[1] H[2] H[3]

Arrays

§ Arrays in assembly language:
ú The address of the first element of the array is used to

store and access the elements of the array.
ú To access element i in the array: start with the address

of the first element and add an offset (distance) to the
address of the first element.
 offset = i * the size of a single element
 address = address of first element + offset

ú Arrays are stored in memory. To process: load the
array values into registers, operate on them, then
store them back into memory.

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

Translating arrays

.data
A: .space 400 # array of 100 integers
B: .word 42:100 # array of 100 integers, all

initialized to value of 42
.text
main: la $t8, A # $t8 holds address of array A

la $t9, B # $t9 holds address of array B
add $t0, $zero, $zero # $t0 holds i = 0
addi $t1, $zero, 100 # $t1 holds 100

LOOP: bge $t0, $t1, END # exit loop when i>=100
sll $t2, $t0, 2 # $t2 = $t0 * 4 = i * 4 = offset
add $t3, $t8, $t2 # $t3 = addr(A) + i*4 = addr(A[i])
add $t4, $t9, $t2 # $t4 = addr(B) + i*4 = addr(B[i])
lw $t5, 0($t4) # $t5 = B[i]
addi $t5, $t5, 1 # $t5 = $t5 + 1 = B[i] + 1
sw $t5, 0($t3) # A[i] = $t5

UPDATE: addi $t0, $t0, 1 # i++
j LOOP # jump to loop condition check

END: ... # continue remainder of program.

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

Optimization!
.data
A: .space 400 # array of 100 integers
B: .word 21:100 # array of 100 integers,

all initialized to 21 decimal.

.text
main: la $t8, A # $t8 holds address of A

la $t9, B # $t9 holds address of B
add $t0, $zero, $zero # $t0 holds 4*i; initially 0
addi $t1, $zero, 400 # $t1 holds 100 * sizeof(int)

LOOP: bge $t0, $t1, END # branch if $t0 >= 400
add $t3, $t8, $t0 # $t3 holds addr(A[i])
add $t4, $t9, $t0 # $t4 holds addr (B[i])
lw $t5, 0($t4) # $t5 = B[i]
addi $t5, $t5, 1 # $t5 = B[i] + 1
sw $t5, 0($t3) # A[i] = $t5
addi $t0, $t0, 4 # update offset in $t0 by 4
j LOOP

END:

int A[100], B[100];
for (i=0; i<100; i++) {

A[i] = B[i] + 1;
}

Yet Another Alternative
.data
A: .space 400 # array of 100 integers
B: .space 400 # array of 100 integers

.text
main: add $t0, $zero, $zero # load “0” into $t0

addi $t1, $zero, 400 # load “400" into $t1
addi $t9, $zero, B # store address of B
addi $t8, $zero, A # store address of A

loop: add $t4, $t8, $t0 # $t4 = addr(A) + i
add $t3, $t9, $t0 # $t3 = addr(B) + i
lw $s4, 0($t3) # $s4 = B[i]
addi $t6, $s4, 1 # $t6 = B[i] + 1
sw $t6, 0($t4) # A[i] = $t6
addi $t0, $t0, 4 # $t0 = $t0++
bne $t0, $t1, loop # branch back if $t0<400

end:

Break

Structs

§ Structs are simply a
collection of fields one
after another in memory
ú With optional padding so

memory access are aligned

§ Assembly does not
understand structs
ú But load/store instructions

allow fixed offset!

struct {
int a;
int b;
int c;

} s;

s.a = 5;
s.b = 13;
s.c = -7;

Example: A struct program

§ How can we
figure out the
main purpose
of this code?

§ The sw lines
indicate that
values in $t1
are being stored
at $t0, $t0+4
and $t0+8.
ú Each previous line sets the value of $t1 to store.

§ Therefore, this code stores the values 5, 13 and
-7 into the struct at location a.

.data
s: .space 12

.text
main: addi $t0, $zero, s

addi $t1, $zero, 5
sw $t1, 0($t0)
addi $t1, $zero, 13
sw $t1, 4($t0)
addi $t1, $zero, -7
sw $t1, 8($t0)

Functions vs Code

§ Up to this point, we’ve been looking at how
to create pieces of code in isolation.

§ A function creates an interface to this code by
defining the input and output parameters.

§ Once a function finishes, control returns to
the caller, optionally with returned value.

§ How can we do this in assembly?

Functions

§ We can jump to a block of code and jump
back
ú How do we know where to jump back to?

§ Can complete functions that have no
parameters or return value
ú Not very useful
ú How do we pass parameters and returned value?

Parameters: Option #1

§ Reserve some registers for parameters &
return values

§ Look back at previous slides:
ú Registers 2-3 ($v0, $v1): return values
ú Registers 4-7 ($a0-$a3): function arguments

§ Problems?
ú What if we need more parameters?
ú What if that function calls another function?
ú Recursion?

Parameters: Option #2

§ Use a stack
§ $sp register points to the

top of the stack.
§ Caller pushes parameters

on top of stack (it grows)
§ Function code pops the

parameters from the
stack using $sp.

Pushing on Stack

§ Special register $sp stores the stack pointer
§ PUSH value $t0 onto the stack

§ POP value from the stack onto $t0

lw $t0, 0($sp) # pop that word off the stack
addi $sp, $sp, 4 # move stack pointer one word

addi $sp, $sp, -4 # move stack pointer one word
sw $t0, 0($sp) # push a word onto the stack

The Stack, illustrated
Address 0

Address N

Address 1

One byte wide (assuming
byte-addressable memory)

Stack

Stack
PointerStack grows

this way
(towards
smaller
addresses)

Maybe other
memory (i.e.
OS code)

Pushing Values to the stack - Before

Address 0

Address 1

Stack
Stack
grows this
way

move stack pointer a word
addi $sp, $sp, -4
push a word onto the stack
sw $t0, 0($sp)

Addr. X

Addr. X + 1

Addr. X +2

Addr. X +3

Addr. X +4 sp

Pushing Values to the stack - After

Address 0

Address 1

Stack
grows this
way

Stack

Addr. X

Addr. X + 1

Addr. X +2

Addr. X +3

Addr. X +4

sp

move stack pointer a word
addi $sp, $sp, -4
push a word onto the stack
sw $t0, 0($sp)

Popping Values off the stack - Before

Address 0

Address 1

Stack

sp

Stack
grows this
way

pop a word off the stack
lw $t0, 0($sp)
move stack pointer a word
addi $sp, $sp, 4

Addr. X

Addr. X + 1

Addr. X +2

Addr. X +3

Addr. X +4

Popping Values off the stack - After

Address 0

Address 1

Stack
sp

Stack
grows this
way

Addr. X

Addr. X + 1

Addr. X +2

Addr. X +3

Addr. X +4

pop a word off the stack
lw $t0, 0($sp)
move stack pointer a word
addi $sp, $sp, 4

String function program

§ Let’s convert this to assembly code!
§ Take in parameters from the stack

ú In this case, the parameters x and y are passed into
the function, in that order.

§ The pointer to the stack is stored in register $29
(aka $sp), which is the address of the top
element of the stack.

void strcpy (char x[], char y[]) {
int i;
i=0;
while ((x[i] = y[i]) != 0)

i += 1;
return 1;

} Equivalent to '\0'

Converting strcpy()

Initialization:
§ Parameters

ú Addresses of
x[0] and y[0]

§ We’ll also need
registers for:
ú The current offset value (i in this case)
ú Temporary values for the address of x[i] and y[i]
ú The current value being copied from y[i] to x[i].

void strcpy (char x[], char y[]) {
int i;
i=0;
while ((x[i] = y[i]) != 0)

i += 1;
return 1;

}

Converting strcpy()
§ Initialization (cont’d):

ú Consider that the locations of x[0] and y[0] are
passed in on the stack, we need to fetch those first.

ú Basic code for popping values off the stack:

ú Basic code for pushing values onto the stack:

lw $t0, 0($sp) # pop that word off the stack
addi $sp, $sp, 4 # move stack pointer by a word

addi $sp, $sp, -4 # move stack pointer one word
sw $t0, 0($sp) # push a word onto the stack

Stack storage example
§ Push addresses of x[0] and

y[0] onto the stack.

§ Pop stored addresses into
registers $t0 and $t1.

addi $sp, $sp, -8
sw $t0, 0($sp)
sw $t1, 4($sp)

lw $t0, 0($sp)
lw $t1, 4($sp)
addi $sp, $sp, 8

Address n

Address n+1

sp the
address
of
x[0]
the
address
of
y[0]

Figure shows
stack *after*

the push.

sp

Converting strcpy()

§ Main algorithm:
What steps do we
need to perform?
ú Get the location

of x[i] and y[i].
ú Fetch a character from y[i] and store it in x[i].
ú Jump to the end if the character is the NUL character.
ú Otherwise, increment i and jump to the beginning.

§ At the end: push the value 1 onto the stack and
return to the calling program.

void strcpy (char x[], char y[]) {
int i;
i=0;
while ((x[i] = y[i]) != 0)

i += 1;
return 1;

}

Translated strcpy program

strcpy: lw $a0, 0($sp) # pop x address
addi $sp, $sp, 4 # off the stack
lw $a1, 0($sp) # pop y address
addi $sp, $sp, 4 # off the stack
add $t0, $zero, $zero # $t0 = offset i

L1: add $t1, $t0, $a0 # $t1 = x + i
lb $t2, 0($t1) # $t2 = x[i]
add $t3, $t0, $a1 # $t3 = y + i
sb $t2, 0($t3) # y[i] = $t2
beq $t2, $zero, L2 # y[i] = '\0'?
addi $t0, $t0, 1 # i++
j L1 # loop

L2: addi $sp, $sp, -4 # push 1 onto
addi $t0, $zero, 1 # the top of
sw $t0, 0($sp) # the stack
jr $ra # return

initialization

main algorithm

end

Calling Functions

§ So we can pass parameters and return values
by using the stack

§ How do we know where to jump back to after
function is done?
ú Could just put PC onto stack
ú Better option: Special register $ra = return address
ú Special operation: jal = jump and link
ú Jumps, and puts value of PC into $ra

How do we call a function?

§ jal FUNCTION_LABEL
ú We do this after we’ve set

the appropriate values to
$a0-$a3 registers and/or pushed
arguments to the stack.

§ jal is a J-Type instruction.
ú It updates register $31 ($ra, return address register)

and also the Program Counter.
ú After it’s executed, $ra contains the address of the

instruction after the line that called jal.

…
sum = 3;
function_X(sum);
sum = 5;

How do we return from a function?

§ jr $ra
ú The PC is set to the

address in $ra.

§ But how do we know
what’s in $ra?
ú $ra was set by the most

recent jal instruction
(function call)!

void function_X (int sum) {

//do something

return;
}

…
sum = 3;
function_X(sum);
sum = 5;

Function Calls – Cont’d

void function_X (int sum) {

//do something

return;
}

…
sum = 3;
function_X(sum);
sum = 5;

(1) jal FUNCTION_X
$ra set to PC of the next instruction

(2) Execution continues
from here

(3) jr $ra

(4) Execution
continues
here

Putting it Together

§ Caller calls Callee
1. Caller pushes arguments onto the stack
2. Caller stores current PC into $ra, jumps to Callee
3. Callee pops arguments from the stack
4. Callee performs function
5. Callee pushes return value onto stack
6. Callee jumps to address stored in $ra
7. Caller pops return value from stack
8. Caller continues on its marry way

Calling Conventions

§ We’ve seen at least two options on how to
implement function calls:
ú Use $a0 - $a3 , $v0 and $v1, and so on.
ú Push on stack

§ There are many other variants.
ú For example, should caller or callee pop variables?
ú Or using registers instead of stack.

§ These are called calling conventions.

Common Calling Conventions

§ It is also possible to use registers to pass values
to and from programs:

 Registers 2-3 ($v0, $v1): return values
 Registers 4-7 ($a0-$a3): function arguments

§ If your function has up to 4 arguments, you would
use the $a0 to $a3 registers in that order. Any
additional arguments would be pushed on the stack.
ú First argument in $a0, second in $a1, and so on.

§ For us: push all arguments and return values to the
stack and pop them when needed.
ú We’ll tell you if we want otherwise.

You Think it’s Over?

Next week – more on functions:
§ Local variables
§ Saving registers
§ Recursion
§ Exceptions
§ System calls
§ Human sacrifice
§ Dogs and cats living together
§ Mass hysteria!

