
Lecture 7:
Processor Storage
and Control

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

The Final Destination

Deconstructing processors

Storage
Thing

Arithmetic
Thing

Controller
Thing

aka: the register file and main memory

The “Storage Thing”

Memory and registers

§ The processor has registers that store a single
value (program counters, instruction
registers, etc.)

§ There are also units in the CPU that store
large amounts of data for use by the CPU:
ú Register file: Small number of fast memory units

that allow multiple values to be read and written
simultaneously.

ú Main memory: Larger grid of memory cells that
are used to store the main information to be
processed by the CPU.

Memory and registers

In terms of access speed:
§ Register = The plate in front of you
§ Cache = The fridge in the kitchen
§ Memory (RAM) = The corner grocery store
§ Hard Disk = The farm in the prairies
§ Network = The farm in another country

Register File Functionality

Register
File

Register 0

Register 1

Register 2

Register 2n

…

…

Destination Reg.
(n-bit address)

Read/Write

Data to write

Register A
(n-bit address)

Register B
(n-bit address)

Value from
Reg. A

Value from
Reg. BRegister File

Typical Setup: (MIPS)
32 registers
Each register is 32 bits
5 bit addressing

Register File – Write Operation

0
1
2
3

0
1
2
3

A

B

Reg B select

Reg A select

R0

R1

R2

R3
Load

Load

Load

Load

Decoder
0 1 2 3

Load Enable

Data

2
Destination
Reg. Address

2

2

Register File – Read Operation

0
1
2
3

0
1
2
3

A

B

Reg B select

Reg A select

R0

R1

R2

R3
Load

Load

Load

Load

Decoder
0 1 2 3

Load Enable

Data

Note: Data, A and B, and all
the registers (R0 to R3) have
the same bitwidth (e.g., n bits).Destination

Reg. Address

2

2

2

Main Memory and Addressing

§ Registers files are fast
but too costly for
storing lots of data.

§ Instead store data in
main memory.

§ Main memory is
addressed in units of
bytes (8-bits)

§ Every group of 4 bytes
is one 32-bit word.

Address
0 01001010
1 11110000
2 01001010
3 11101010
4 00001110
5 ...
6 ...
7
8
9

10
11
12

word

word

word

Electronic Memory
§ Like register files, main memory is made up

of a decoder and rows of memory units.

Row 0

Row 1

Row 2

Row 3

...

Row 2m-1

D
e
c
o
d
e
r

mAddress
Lines

...

Data
Lines

D0 D1 D2 Dn-1

§ There are 2m rows.
ú m is the address width

§ Each row contains n bits.
ú n is the data-width

§ What’s the size of this memory?
ú 2m * n bits => 2m * n / 8 Bytes

Memory Array

Cell 2 Cell 1 Cell 0

Cell 2 Cell 1 Cell 0

Cell 2 Cell 1 Cell 0

Cell 2 Cell 1 Cell 0

wordline 0

wordline 1

wordline 2

wordline 3

D
e
c
o
d
e
r

bitline 2 bitline 1 bitline 0

Memory Array – signals

D
e
c
o
d
e
r

Wordline:
which memory
row (word) to
read/write

Bitline:
read/write data

Also add read/write signal.
Can add column select line if needed.

Data Bus

§ Communication between
components takes place
through groups of shared wires
called a bus (or data bus).

§ Multiple components can read
from a bus, but only one can
write to a bus at a time.
ú Also called a bus driver.

§ Each component has a tristate
buffer that feeds into the bus.
When not reading or writing,
the tristate buffer drives high
impedance onto the bus.

Controlling the flow

§ Since some lines (buses)
will now be used for both
input and output, we
introduce a (sort of) new
gate called the tri-state
buffer.

§ When WE (write enable)
signal is low, buffer
output is a high
impedance signal.
ú The output is neither

connected to high voltage
or to the ground.

WE A Y

0 X Z

1 0 0

1 1 1

WE

A Y

Controlling the flow

WE A Y

0 X Z

1 0 0

1 1 1

WE

A Y

§ WE = 1
ú A is connected to Y

§ WE = 0
ú A is disconnected from Y

§ Used to control data lines so
that only one device can write
onto the bus at any time
(Multiple devices reading
is usually fine)

Example: Asynchronous SRAM Interface

Chip Enable
(CE)

Read/Write Output Enable
(OE)

Access Type

0 0 1 SRAM Write

0 1 0 SRAM Read

1 X X SRAM not enabled

SRAM

Address
(n-bit) Data

(m-bit)
CE

Read/Write
OE

Asynchronous SRAM - Timing waveforms

Address

SRAM Read

Data

SRAM Write

__
CE

Read/
Write__

OE
hi-Z hi-Z hi-Z

§ Each memory read and write is done in stages.
§ Each stage takes a certain amount of time.

Data from SRAM Data to SRAM

time

Reading From Memory – Timing Constraints

§ tAA = Address Access time
ú Time needed for address to be stable before reading data

values (~10ns).

§ tOHA = Output Hold time
ú Time output data is held after change of address (~2ns).

Address

Prev. data valid

Read Cycle Time

Data validData Out

tAA tOHAtOHA

Writing To Memory – Timing Constraints

§ tSA = Addr. Setup Time (~0ns)
ú Time for address to be stable before enabling write signal.

§ tAW = Address Setup Time to Write End (~8ns)

§ tSD = Data Setup to Write End (~6ns)
ú Time for data-in value to be set-up at destination.

§ tHD = Data Hold from Write End (~0ns)
ú Time data-in value should stay unchanged after write signal changes.

Address
Write Cycle Time

Data In

Read/
Write

tSA tHA

tSD tHD
tAW

Valid Data-In

Memory vs registers

§ Memory houses most of the data values
being used by a program.

§ Registers are for local / temporary data
stores, meant to be used to execute an
instruction.
ú Registers are can host memory between

instructions (like scrap paper for a calculation).
ú Some have special purpose or used to control

execution, like the stack pointer register

Memory vs registers

§ In terms of access speed
ú Register = The plate in front of you

ú Cache = The fridge in the kitchen
ú Memory (RAM) = The corner grocery

store
ú Hard Disk = The farm in the prairies
ú Network = The farm in another country

Load-Store Architecture

§ The MIPS processor architecture we are
building is a load-store architecture.
ú We load data from main memory to registers
ú Process them using ALU
ú Store back in main memory

§ We do either ALU or memory, not both.
§ This simplifies design of datapath and

instruction set.

§ Now we know what the Arithmetic and
Storage Things do

Storage
Thing

Arithmetic
Thing

Controller
Thing

Break

1981 :
- 2GB
- 3MB/s
- $140,000

2019:
- 200GB
- 50MB/s
- $25

§ Before we get to the controller
§ Need to talk about the data path

Storage
Thing

Arithmetic
Thing

Controller
Thing

This part here

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

Processor Datapath Diagram

Datapath vs. Control

§ Datapath: where all data computations take
place.
ú Often a diagram version of real wired connections.

§ Control unit: orchestrates the actions that
take place in the datapath.
ú The control unit is a big finite-state machine

that instructs the datapath to perform all
appropriate actions.

Datapath example

Example: Calculate x2 + 2x

§ Assume that you have access to a value from
an external source. How would you compute
x2 + 2x with components you’ve seen so far?

§ Components needed:
ú ALU (to add, subtract and multiply values)
ú Multiplexers (to determine what the inputs should

be to the ALU)
ú Registers (to hold values used in the calculation)

Example schematic

ALU

0 1 0 1

X

SelxA SelAB

ALUop

LdRA LdRBRBRA

Making the calculation

Steps for x2 + 2x:
§ Load X into RA & RB
§ Multiply RA & RB

ú Store result in RA
§ Add X to RA

ú Store result in RA

§ Add X to RA again
ú ALU output is x2 + 2x.

§ How do we make this happen?

Making the calculation

High-level Steps Control Signals

§ Load X into RA & RB

§ Multiply RA & RB
ú Store result in RA

§ Add X to RA
ú Store result in RA

§ Add X to RA again
ú ALU output is x2 + 2x.

§ Who sends these signals?

§ SelxA = 0, ALUop = Pass,
LdRA = 1, LdRB = 1

§ SelxA = 1, SelAB = 1,
ALUop = Multiply, LdRA = 1

§ SelxA = 0, SelAB = 0,
ALUop = Add, LdRA = 1

§ SelxA = 0, SelAB = 0,
ALUop = Add

Example schematic

ALU

0 1 0 1

X

SelxA SelAB

ALUop

LdRA LdRBRBRA

Control Unit

§ Basically, a giant Finite State Machine
ú Synchronized to system-wide signals (clock, resetn)

§ Outputs the datapath control signals
ú SelxA, SelAB => control mux outputs (ALU inputs)
ú ALUop => controls ALU operation
ú LdRA, LdRB => controls loading for registers RA, RB

§ Some architectures also output a done signal,
when the computation is complete
ú Yet another output; not shown in our datapaths

Datapath + Control

Datapath

(ALU,
registers,

muxes)

x

F (ALU
result)

selxA

selAB

LdRA

LdRB

ALUop

resetn

FSM

go

clk

done

8 bits

8 bits

These signals
are optional,
for whenever
the operation
starts or stops

aka: the Control Unit

The “Control Thing”

The Control Unit

§ Control unit determines for data path:
ú Where the data is coming from (the source),
ú Where it’s going to (the destination), and
ú How the data is being processed (the operation).

§ How does the control unit know what operation
to perform?
ú It gets information from an instruction.
ú This instruction also passes other information about

the operation to the rest of the processor.
ú The control unit is responsible for loading the next

instruction to run, after completing the current one.

Data sources and destinations

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

Memory
Holds both
instructions
and data.

Register File. Has
2 read ports and
one write port.

Executing a program

§ What actually happens when you run an
executable program on your computer? (e.g.,
Quartus.exe, ls, FaceTubeSnapFlix App)
ú OS loads a series of instructions into memory
ú Location of first instruction is provided to CPU
ú CPU executes instructions one at a time

Instructions

§ What is an instruction?
ú 32 bit binary string in our MIPS processor

 Length depends on architecture.
ú Tells the processor (the control thing) what to do

§ How do we know which instruction to
execute?
ú Special register: Program Counter (PC)
ú Incremented by 4 (32 bits = 4 bytes) after every

instruction fetch
ú Can also be set by output of ALU to allow us to

'jump' to another part of the code

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

The Program Counter

Program counter holds
address of instruction

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

The Program Counter

Program counter holds
address of instruction

Instruction decoding

§ Okay… Here's your instruction… GO

00000000 00000001 00111000 00100011

Instruction decoding

§ The instructions themselves can be broken
down into sections that contain all the
information needed to execute the operation.
ú Also known as a control word.

§ Example: unsigned subtraction

000000ss sssttttt ddddd000 00100011

00000000 00000001 00111000 00100011

Register 7 = Register 0 – Register 1

Instruction registers

§ The instruction register takes in the 32-bit
instruction fetched from memory, and reads
the first 6 bits (known as the opcode) to
determine what operation to perform.

00000000 00000001 00111000 00100011

Instruction register

000000 00 00000001 00111000 00100011

00000 00001 00111 100011

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

The Instruction Register

Instruction register stores
current instruction and
divide it into sections

MIPS instruction types

§ R-type:

§ I-type:

§ J-type:

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

opcode rs rt

6 5

immediate

5 16

opcode address

6 26

Opcodes
§ The first six digits

of the instruction
(the opcode) will
determine the
instruction type.
ú For “R-type”

instructions
(marked in yellow)
opcode is 000000,
and last six digits
denote the
function.

Instruction Op/Func
add 100000
addu 100001
addi 001000
addiu 001001
div 011010
divu 011011
mult 011000
multu 011001
sub 100010
subu 100011
and 100100
andi 001100
nor 100111
or 100101
ori 001101
xor 100110
xori 001110
sll 000000
sllv 000100
sra 000011

Instruction Op/Func
srav 000111
srl 000010
srlv 000110
beq 000100
bgtz 000111
blez 000110
bne 000101
j 000010
jal 000011
jalr 001001
jr 001000
lb 100000
lbu 100100
lh 100001
lhu 100101
lw 100011
sb 101000
sh 101001
sw 101011
mflo 010010

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

The Processor Datapath

Simplified Datapath

§ Most processor
operations have
stages as shown
in the diagram:
1. Instruction

fetch
2. Instruction

decode &
register fetch

3. Execute
address/data
calculation

4. Memory access
5. Write back.

Address (PC)

Instruction
Memory

Instruction +4

Register FileSign ext.

Mux Mux

Data
Memory

Mux

ALU

Mux

Note: this is just

an abstraction J

R-type instructions

§ Short for “register-type” instructions.
ú Because they operate on the registers, naturally.

§ These instructions have fields for specifying up to
three registers and a shift amount.
ú Three registers: two source registers (rs & rt) and one

destination register (rd).
ú A field is usually coded with all 0 bits when not being used.

§ The opcode for all R-type instructions is 000000.
§ The function field specifies the type of operation

being performed (add, sub, and, etc).

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

R-type instruction datapath
§ For the most part,

the funct field
tells the ALU
what operation to
perform.

§ rs and rt are
sent to the
register file, to
specify the ALU
operands.
ú Register $0 and

$1 are usually
held in reserve.

§ rd is also sent to
the register file,
to specify the
location of the
result.

Address (PC)

Instruction
Memory +4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

Example

00000000 11010001 00101000 00100110

MIPS instruction types

§ R-type:

§ I-type:

§ J-type:

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

opcode rs rt

6 5

immediate

5 16

opcode address

6 26

Instruction Op/Func
add 100000
addu 100001
addi 001000
addiu 001001
div 011010
divu 011011
mult 011000
multu 011001
sub 100010
subu 100011
and 100100
andi 001100
nor 100111
or 100101
ori 001101
xor 100110
xori 001110
sll 000000
sllv 000100
sra 000011

Instruction Op/Func
srav 000111
srl 000010
srlv 000110
beq 000100
bgtz 000111
blez 000110
bne 000101
j 000010
jal 000011
jalr 001001
jr 001000
lb 100000
lbu 100100
lh 100001
lhu 100101
lw 100011
sb 101000
sh 101001
sw 101011
mflo 010010

§ We look at opcode, it is 00000 à R-type
§ Now look at funct à 100110 àXOR
§ Now we look at rs, rt, and rd registers:

ú rs = 6, rt = 17, rd = 5

àXOR the the value of registers 5 and 17 and
store it in register 5 (xor $5, $17, $6)

Example

00000000 11010001 00101000 00100110

I-type instructions

§ These instructions have a 16-bit immediate field.
§ This field a constant value, which is used for:

ú an immediate operand,
ú a branch target offset (e.g., branch if equal)
ú a displacement for a memory operand. (e.g., load)

§ For branch target offset operations, the immediate field
contains the signed difference between the current address
stored in the PC and the address of the target instruction.
ú This offset is stored with the two low order bits dropped. Since

we can only jump by 4 bytes at a time (word alignment), we don't
bother writing the lowest 2 bits, leaving more space for useful
bits.

opcode rs rt

6 5

immediate

5 16

I-type instruction datapath

§ Example #1:
Immediate
arithmetic
operations,
with result
stored in
registers.

Address (PC)

Instruction
Memory +4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU
§ Sign Extension: We get a

16 bit immediate value,
but need 32 bits for an
ALU operand. So fill
upper 16 bits with "sign
bit" (most significant bit)

I-type instruction datapath

§ Example #2:
Immediate
arithmetic
operations,
with result
stored in
memory.

Address (PC)

Instruction
Memory +4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

I-type instruction datapath

§ Example #3:
Branch
instructions.
ú Output is

written to
PC, which
looks to that
location for
the next
instruction.

Address (PC)

Instruction
Memory +4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

Example

00100000 11010001 00000000 00100110

Instruction Op/Func
add 100000
addu 100001
addi 001000
addiu 001001
div 011010
divu 011011
mult 011000
multu 011001
sub 100010
subu 100011
and 100100
andi 001100
nor 100111
or 100101
ori 001101
xor 100110
xori 001110
sll 000000
sllv 000100
sra 000011

Instruction Op/Func
srav 000111
srl 000010
srlv 000110
beq 000100
bgtz 000111
blez 000110
bne 000101
j 000010
jal 000011
jalr 001001
jr 001000
lb 100000
lbu 100100
lh 100001
lhu 100101
lw 100011
sb 101000
sh 101001
sw 101011
mflo 010010

MIPS instruction types

§ R-type:

§ I-type:

§ J-type:

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

opcode rs rt

6 5

immediate

5 16

opcode address

6 26

Example

00100000 11010001 00000000 00100110

§ Opcode 001000 à I-type à addi
§ rs = 6
§ rt = 17
§ Immediate = 38

à Add the value 38 to register 6 and store the
result in register 17 (addi $17, $6, 38)

J-type instructions

§ Only two J-type instructions:
ú jump (j)
ú jump and link (jal)

§ These instructions use the 26-bit coded address field to
specify the target of the jump.

§ But 32 bits are needed for an address.
ú The first four bits of the destination address stay the same as in

the current PC.
ú The bits in positions 27 to 2 in the address are the 26 bits

provided in the instruction.
ú The bits at positions 1 and 0 are set to zero (word alignment).

opcode address

6 26

J-type instruction datapath

§ Jump and branch
use the datapath in
similar but
different ways:

§ Branch calculates
new PC value as old
PC value + offset.

§ Jump loads an
immediate value
over top of the old
PC value.

Address (PC)

Instruction
Memory +4

Sign ext.

Data
Memory

ALU

Mux

Instruction

Register File

Mux Mux

Mux

ALU

Examples

00001010 11010001 00000000 00100110

Instruction Op/Func
add 100000
addu 100001
addi 001000
addiu 001001
div 011010
divu 011011
mult 011000
multu 011001
sub 100010
subu 100011
and 100100
andi 001100
nor 100111
or 100101
ori 001101
xor 100110
xori 001110
sll 000000
sllv 000100
sra 000011

Instruction Op/Func
srav 000111
srl 000010
srlv 000110
beq 000100
bgtz 000111
blez 000110
bne 000101
j 000010
jal 000011
jalr 001001
jr 001000
lb 100000
lbu 100100
lh 100001
lhu 100101
lw 100011
sb 101000
sh 101001
sw 101011
mflo 010010

MIPS instruction types

§ R-type:

§ I-type:

§ J-type:

opcode rs rt

6 5

rd

5

shamt

5

funct

5 6

opcode rs rt

6 5

immediate

5 16

opcode address

6 26

Examples

00001010 11010001 00000000 00100110

§ Opcode 000010 à J-type à j
§ Address = 10 1101 0001 0000 0000 0010 0110

àJump to address:
xxxx10110 1000100 00000000 10011000
(xxxx are the current 4 high bits of the PC)

(in assembly: j 0x2D10026)

Datapath control

§ These instructions are executed by turning
various parts of the datapath on and off, to
direct the flow of data from the correct
source to the correct destination.

§ What tells the
processor to turn
on these various
components at
the correct times?

Control unit
§ The control unit takes

in the opcode from the
current instruction, and
sends signals to the rest
of the processor.

§ Within the control unit is a
finite state machine that can occupy multiple
clock cycles for a single instruction.
ú The control unit send out different signals on each

clock cycle, to make the overall operation happen.

Control
Unit

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Opcode

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

§ The control unit sends signals (green lines) to various
processor components to enact all possible operations.

Signals à instructions

§ A certain combination of signals will
make data flow from some source to
some destination.

§ Just need to figure out what signals
produce what behaviour.

Control unit signals
§ PCWrite: Write the ALU output to the PC.
§ PCWriteCond: Write the ALU output to the PC,

only if the Zero condition has been met.
§ IorD: For memory access; short for “Instruction or

Data”. Signals whether the memory address is being
provided by the PC (for instructions) or an ALU
operation (for data).

§ MemRead: The processor is reading from memory.
§ MemWrite: The processor is writing to memory.
§ MemToReg: The register file is receiving data from

memory, not from the ALU output.
§ IRWrite: The instruction register is being filled

with a new instruction from memory.

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

§ The control unit sends signals (green lines) to various
processor components to enact all possible operations.

More control unit signals
§ PCSource: Signals whether the value of the PC

resulting from an jump, or an ALU operation.
§ ALUOp (3 wires): Signals the execution of an ALU

operation.
§ ALUSrcA: Input A into the ALU is coming from the PC

(value=0) or the register file (value=1).
§ ALUSrcB (2 wires): Input B into the ALU is coming from

the register file (value=0), a constant value of 4
(value=1), the instruction register (value=2), or the
shifted instruction register (value=3).

§ RegWrite: The processor is writing to the register file.
§ RegDst: Which part of the instruction is providing the

destination address for a register write (rt versus rd).

Example instruction

§ addi $t7, $t0, 42

ú PCWrite = ?

ú PCWriteCond = ?
ú IorD = ?

ú MemWrite = ?
ú MemRead = ?

ú MemToReg = ?
ú IRWrite = ?

ú PCSource = ?

ú ALUOp = ?
ú ALUSrcA = ?

ú ALUSrcB = ?
ú RegWrite = ?

ú RegDst = ?

Read reg 1

Read reg 2

Write reg

Write data

Read
data 1

Read
data 2

Registers

ALU
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction
[31-26]

Instruction
Register

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] 0

1

0

1Memory
data

register

Memory
data

Memory

Address

Write
data

ALU
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign
extend

§ The control unit sends signals (green lines) to various
processor components to enact all possible operations.

Example instruction

§ addi $t7, $t0, 42

ú PCWrite = 0

ú PCWriteCond = 0
ú IorD = X

ú MemWrite = 0
ú MemRead = 0

ú MemToReg = 0
ú IRWrite = 0

ú PCSource = X

ú ALUOp = 001 (add)
ú ALUSrcA = 1

ú ALUSrcB = 10
ú RegWrite = 1

ú RegDst = 0

Example instruction

§ addi $t7, $t0, 42

This is a line of assembly
language

Processors
Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Logic Gates

Transistors

Assembly Language

Started from the
bottom now
we're here

Tale of a program
§ User writes code
§ Compile code into machine level instructions
§ Save instructions in an executable file
§ Run the executable file

ú Load file into memory
ú Set PC
ú CPU loads instructions into instruction register
ú Control unit reads op-code
ú Signals turn on/off
ú Billions of transistors turning on/off
ú Trillions of electrons start flowing

