Week 6: Processor Components

Microprocessors

- So far, we've been making devices, such such as adders, counters and registers.
- The ultimate goal is to make a microprocessor, which is a digital device that processes input, can store values and produces output, according to a set of onboard instructions.

Microprocessors

- Microprocessors are a combination of the units that we've discussed so far:

- Registers to store values.
- Adders and shifters to process data.
- Finite state machines to control the process.
- Microprocessors have been the basis of all computing since the 1970's, and can be found in nearly every sort of electronics.

To get to this

The Final Destination

The Final Destination

Deconstructing processors

- Simpler at a high level:

The "Arithmetic Thing"

aka: the Arithmetic Logic Unit (ALU)

Arithmetic Logic Unit

- The first microprocessor applications were calculators.
- Remember adders and subtractors?
- These are part of a larger
 structure called the arithmetic logic unit (ALU).
- You made a simple one for a lab!
- This larger structure is responsible for the processing of all data values in a basic CPU.

ALU inputs

- The ALU performs all of the arithmetic operations covered in this course so far, and logical operations as well (AND, OR, NOT, etc.)
- Input S represents select bits (in this case, $\mathrm{S}_{2} \mathrm{~S}_{1}$ \& S_{0}) that specify which operation to perform.
" For example: S2 is a mode select bit, indicating whether the ALU is in arithmetic or logic mode The carry-in bit $C_{i n}$ is used in operations such as incrementing an input value or the overall result.

ALU outputs

- In addition to the input signals, there are output
 signals V, C, N \& Z which indicate special conditions in the arithmetic result:
- V: overflow condition
- The result of the operation could not be stored in the n bits of G , meaning that the result is incorrect.
- C: carry-out bit
- N: Negative indicator

Z: Zero-condition indicator

The "A" of ALU

- To understand how the ALU does all of these operations, let's start with the arithmetic side.
- Fundamentally, this side is made of an adder / subtractor unit, which we've seen already:

Arithmetic components

- In addition to addition and subtraction, many more operations can be performed by manipulating what is added to input A, as shown in the diagram above.

Arithmetic operations

- If the input logic circuit on the left sends B straight through to the adder, result is $\mathrm{G}=\mathrm{A}+\mathrm{B}$
- What if B was replaced by all-ones instead?
- Result of addition operation: G = A-1
- What if B was replaced by $\overline{\mathrm{B}}$?
- Result of addition operation: G = A-B-1
- And what if B was replaced by all zeroes?
- Result is: G = A. (Not interesting, but useful!)
\rightarrow Instead of a Sub signal, the operation you want is signaled using the select bits $S_{0} \& S_{1}$.

Operation selection G = A + Y

Select bits		$\begin{gathered} \mathbf{Y} \\ \text { Input } \end{gathered}$	Result	Operation
S_{1}				
0	0	All 0s	$\mathrm{G}=\mathrm{A}$	Transfer
0	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$	Addition
	0	\bar{B}	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	Subtraction-1
	1	All 1s	$\mathrm{G}=\mathrm{A}-1$	Decrement

- This is a good start! But something is missing...
- Wait, what about the carry-in bit?

Full operation selection

Select Input

Operation

S_{1}	S_{0}	Y	$\mathrm{C}_{\text {in }}=0$	$\mathrm{C}_{\text {in }}=1$
0	0	All 0s	$\mathrm{G}=\mathrm{A}$ (transfer)	$\mathrm{G}=\mathrm{A}+1$ (increment)
0	1	B	$\mathrm{G}=\mathrm{A}+\mathrm{B}$ (add)	$\mathrm{G}=\mathrm{A}+\mathrm{B}+1$
1	0	\bar{B}	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}$	$\mathrm{G}=\mathrm{A}+\overline{\mathrm{B}}+1$ (subtract)
1	1	All 1s	$\mathrm{G}=\mathrm{A}-1$ (decrement)	$\mathrm{G}=\mathrm{A}$ (transfer)

- Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A.

Full operation selection

Select Input
Operation

- Based on the values on the select bits and the carry bit, we can perform any number of basic arithmetic operations by manipulating what value is added to A.

The "L" of ALU

- We also want a circuit that can perform logical operations, in addition to arithmetic ones.
- How do we tell which operation to perform?

- Another select bit!
- If $S_{2}=1$, then logic circuit block is activated.
- Multiplexer is used to determine which block (logical or arithmetic) goes to the output.

Single ALU Stage

ALU block diagram

- In addition to data inputs and outputs, this circuit also has:
- outputs indicating the different conditions,
- inputs specifying the operation to perform (similar to Sub).

What about multiplication?

- Multiplication (and division) operations are more complicated than other arithmetic (plus, minus) or logical (AND, OR) operations.
- Three major ways that multiplication can be implemented in circuitry:
- Layered rows of adder units.
- An adder/shifter circuit with accumulator.
- Booth's Algorithm

Break

$$
\text { 4) } \begin{aligned}
3 \times 9 & =? \\
=3 \times \sqrt{81}=3 \sqrt{81}= & 3 \sqrt{27} \\
& \frac{6}{21}=27 \\
& \frac{21}{0}
\end{aligned}
$$

Multiplication

- Revisiting grade 3 math...

Binary Multiplication

5*6 (unsigned)

- And now, in binary...

Binary Multiplication

- Or seen another way....

Binary Multiplication

$$
\begin{array}{|lllllll}
\hline & & & & a_{3} & a_{2} & a_{1} \\
& & & a_{0} \\
& & & b_{3} & b_{2} & b_{1} & b_{0} \\
\hline & & & a_{3} b_{0} & a_{2} b_{0} & a_{1} b_{0} & a_{0} b_{0} \\
& & & & a_{3} b_{1} & a_{2} b_{1} & a_{1} b_{1} \\
& & a_{0} b_{1} & \\
& & a_{3} b_{2} & a_{2} b_{2} & a_{1} b_{2} & a_{0} b_{2} & \\
\\
& a_{3} b_{3} & a_{2} b_{3} & a_{1} b_{3} & a_{0} b_{3} & & \\
\hline p_{7} & p_{6} & p_{5} & p_{4} & p_{3} & p_{2} & p_{1} \\
\hline
\end{array}
$$

Implementation

- Implementing this in circuitry involves the summation of several AND terms.
- AND gates combine input signals.
- Adders combine the outputs of the AND gates.

Multiplication

- This implementation results in an array of adder circuits to make the multiplier circuit.
- This can get a little expensive as the size of the operands grows.

- N-bit numbers $\rightarrow \mathrm{O}(1)$ clock cycles, but $\mathrm{O}\left(\mathrm{N}^{2}\right)$ size.
- Is there an alternative to this circuit?

Accumulator circuits

- What if you could perform each stage of the multiplication operation, one after the other?
- This circuit would only need a single row of adders and a couple of shift registers.
- How wide does register R have to be?
Is there a simpler way to do this?

Sign Extension

- To subtract 4-bit number from 8-bit number....
- How do we convert a 4-bit two's complement number to 8-bit?
- Sign extend: replicate most significant bit $0101 \rightarrow 00000101 \quad 1001 \rightarrow 11111001$ (5) (still 5)
(-7)
(still -7)
- Arithmetic shift right: shift right and replicate sign bit (you saw this in lab!)

Booth's Algorithm

- Devised as a way to take advantage of circuits where shifting is cheaper than adding, or where space is at a premium.
- Based on the premise that when multiplying by certain values (e.g. 99), it can be easier to think of this operation as a difference between two products.
- Consider the shortcut method when multiplying a given decimal value X by 999 :

$$
X * 9999=X * 10000-x * 1
$$

- Now consider the equivalent problem in binary:

$$
X * 001111=X * 010000-X * 1
$$

Booth's Example in Decimal

- Compute $999 \times 5 \rightarrow$
- $1000 \times 5-1 \times 5 \rightarrow 5,000-5=4,995$
- Compute 99,900 x $5 \rightarrow$
- $100,000 \times 5-100 \times 5=500,000-500=499,500$
- Compute 999099 $55 \rightarrow$
- $1,000,000 \times 5-1,000 \times 5 \rightarrow 5,000,000-5,000=$ 4,995,000
$100 \times 5-1 \times 5 \rightarrow 500-5=495$
$4,995,000+495=4,995,495$

Booth's Algorithm

- This idea is triggered on cases where two neighboring digits in an operand are different.
- Go through digits from n-1 to 0
- If digits at i and i-1 are 0 and 1, the multiplicand is added to the result at position i.
- If digits at i and i-1 are 1 and 0, the multiplicand is subtracted from the result at position i.
- The result is always a value whose size is the sum of the sizes of the two multiplicands.

Booth's Algorithm

- Example:

Booth's Algorithm

- We need to make this work in hardware.
- Option \#1: Have hardware set up to compare neighbouring bits at every position in A, with adders in place for when the bits don't match.
- Problem: This is a lot of hardware, which Booth's Algorithm is trying to avoid.
- Option \#2: Have hardware set up to compare two neighbouring bits, and have them move down through A, looking for mismatched pairs.
Problem: Hardware doesn't move like that. Oops.

Booth's Algorithm

- Still need to make this work in hardware...
- Option \#3: Have hardware set up to compare two neighbouring bits in the lowest position of A, and looking for mismatched pairs in A by shifting A to the right one bit at a time.
- Solution! This could work, but the accumulated solution P would have to shift one bit at a time as well, so that when B is added or subtracted, it's from the correct position.

Booth's Algorithm

- Steps in Booth's Algorithm:

1. Designate the two multiplicands as A \& B, and the result as some product P.
2. Add an extra zero bit to the right-most side of A.
3. Repeat the following for each original bit in A :
a) If the last two bits of A are the same, do nothing.
b) If the last two bits of A are 01 , then add B to the highest bits of P.
c) If the last two bits of A are 10 , then subtract B from the highest bits of P.
d) Perform one-digit arithmetic right-shift on both P and A . The result in P is the product of A and B .

Booth's Algorithm Example

- Example: (-5) * 2
- Steps \#1 \& \#2:
- $\mathrm{A}=-5 \rightarrow 11011$
- Add extra zero to the right $\quad \rightarrow \mathrm{A}=110110$
- $B=2 \rightarrow 00010$
- $-\mathrm{B}=-2 \rightarrow 11110$
- $\mathrm{P}=0 \quad \rightarrow \quad 0000000000$

Booth's Algorithm Example

- Step \#3 (repeat 5 times):
- Check last two digits of A:

$$
\begin{aligned}
& A=110110 \\
& P=0000000000
\end{aligned}
$$

$$
1 1 0 1 \longdiv { 1 0 }
$$

- Since digits are 10 , subtract B from the most significant digits of P:

P	00000	00000
-B	+11110	
P^{\prime}	11110	00000

Arithmetic shift P and A one bit to the right:

$$
A=111011 \quad P=1111100000
$$

Booth's Algorithm Example

- Step \#3 (repeat 4 more times):
- Check last two digits of A:

```
A = 11101 1
P = 1111100000
```

$$
1110 \lcm{11}
$$

- Since digits are 11, do nothing to P.
- Arithmetic shift P and A one bit to the right:
- $A=111101 \quad P=1111110000$

Booth's Algorithm Example

- Step \#3 (repeat 3 more times):
- Check last two digits of A:

$$
1 1 1 \longdiv { 0 1 }
$$

- Since digits are 01, add B to the most significant digits of P :

P	11111	10000
+B	+00010	
P^{\prime}	00001	10000

Arithmetic shift P and A one bit to the right:

$$
A=111110 \quad P=0000011000
$$

Booth's Algorithm Example

- Step \#3 (repeat 2 more times):
- Check last two digits of A:

$$
\begin{aligned}
& A=111110 \\
& P=0000011000
\end{aligned}
$$

$$
1 1 1 1 \longdiv { 1 0 }
$$

- Since digits are 10, subtract B from the most significant digits of P:

P	00000	11000
-B	+11110	
P^{\prime}	11110	11000

Arithmetic shift P and A one bit to the right:

$$
A=111111 \quad P=1111101100
$$

Booth's Algorithm Example

- Step \#3 (final time):
- Check last two digits of A:

$$
\begin{aligned}
& A=111111 \\
& P=1111101100
\end{aligned}
$$

$$
1 1 1 1 \longdiv { 1 1 }
$$

- Since digits are 11, do nothing to P:
- Arithmetic shift P and A one bit to the right:
- $A=111111 \quad P=1111110110$
- Final product:

$$
\begin{aligned}
P & =111110110 \\
& =-10
\end{aligned}
$$

Reflections on multiplication

- A popular version of this algorithm involves copying A into the lower bits of P, so that the testing and shifting only takes place in P.
- Also good for maintaining the original value of A.
- Multiplication isn't as common an operation as addition or subtraction, but occurs enough that its implementation is handled in the hardware, rather than by the CPU.
- Most common multiplication and division operations are powers of 2 . For this, the shift register is used instead of the multiplier circuit.

Function Unit

The "Storage Thing"

aka: the register file and main memory
More on this next time

