
Week 6: Processor 
Components



Microprocessors

§ So far, we’ve been about 
making devices, such
such as adders, counters
and registers.

§ The ultimate goal is to make a 
microprocessor, which is a digital device that 
processes input, can store values and 
produces output, according to a set of on-
board instructions.



Microprocessors

§ Microprocessors are a
combination of the
units that we’ve
discussed so far:
ú Registers to store values.
ú Adders and shifters to process data.
ú Finite state machines to control the process.

§ Microprocessors have been the basis of all 
computing since the 1970’s, and can be found 
in nearly every sort of electronics.



We build these

Processors
Finite State 
Machines

Arithmetic 
Logic Units

Devices Flip-flops

Circuits

Logic Gates

Transistors

Assembly Language

To get to this



The Final Destination 



Read reg 1

Read reg 2

Write reg

Write data

Read 
data 1

Read 
data 2

Registers

ALU 
result

ZeroA

B
ALU

0

1

0
1
2
3

4

A

B

Instruction 
[31-26]

Instruction  
Register

Instruction 
[25-21]

Instruction 
[20-16]

Instruction 
[15-0] 0

1

0

1Memory 
data 

register

Memory 
data

Memory

Address

Write 
data

ALU 
Out

0
1
2Shift left 2

0

1

PC

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource
ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst
Opcode

Control
Unit

Shift left 2Sign 
extend

The Final Destination



Deconstructing processors
§ Simpler at a high level:

Storage 
Thing

Arithmetic  
Thing

Controller  
Thing “Datapath”



aka: the Arithmetic Logic Unit (ALU)

The “Arithmetic Thing”



Arithmetic Logic Unit

§ The first microprocessor
applications were calculators.
ú Remember adders 

and subtractors?
ú These are part of a larger 

structure called the arithmetic 
logic unit (ALU).

ú You made a simple one for a lab!

§ This larger structure is responsible for the 
processing of all data values in a basic CPU.



ALU inputs
§ The ALU performs all of

the arithmetic operations
covered in this course so
far, and logical operations
as well (AND, OR, NOT, etc.)
ú Input S represents select bits (in this case, S2 S1 & S0) 

that specify which operation to perform. 
  For example: S2 is a mode select bit, indicating 

whether the ALU is in arithmetic or logic mode

ú The carry-in bit Cin is used in operations such as 
incrementing an input value or the overall result.

A B

G

S, Cin VCNZ



ALU outputs

§ In addition to the input
signals, there are output
signals V, C, N & Z which
indicate special conditions
in the arithmetic result:
ú V: overflow condition

  The result of the operation could not be stored in 
the n bits of G, meaning that the result is incorrect.

ú C: carry-out bit
ú N: Negative indicator
ú Z: Zero-condition indicator

A B

G

S, Cin VCNZ



The “A” of ALU
§ To understand how the ALU does all of these 

operations, let’s start with the arithmetic side.
§ Fundamentally, this side is made of an adder / 

subtractor unit, which we’ve seen already:

Cin
FA

X0

Y0

S0

FA

X1

Y1

S1

C1
FA

X2

Y2

S2

C2
FA

X3

Y3

S3

C3Cout

Sub



Arithmetic components

§ In addition to addition and subtraction, many more 
operations can be performed by manipulating what 
is added to input A, as shown in the diagram above.

B input
logic

n-bit 
parallel
adder

A

B

Cin

S0
S1

G

G = X + Y + Cin

Cout

X

Y

n

n
n

n



Arithmetic operations 

§ If the input logic circuit on the left sends B 
straight through to the adder, result is G = A+B

§ What if Bwas replaced by all-ones instead?
ú Result of addition operation:  G = A-1

§ What if Bwas replaced by B?
ú Result of addition operation:  G = A-B-1

§ And what if Bwas replaced by all zeroes?
ú Result is:  G = A. (Not interesting, but useful!)

à Instead of a Sub signal, the operation you want is 
signaled using the select bits S0 & S1.



Operation selection G = A + Y

§ This is a good start! But something is missing…
§ Wait, what about the carry-in bit?

Select 
bits Y

Input
Result Operation

S1 S0

0 0 All 0s G = A Transfer

0 1 B G = A+B Addition

1 0 B G = A+B Subtraction - 1

1 1 All 1s G = A-1 Decrement



Full operation selection

§ Based on the values on the select bits and the 
carry bit, we can perform any number of basic 
arithmetic operations by manipulating what 
value is added to A.

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A  (transfer) G = A+1  (increment)

0 1 B G = A+B  (add) G = A+B+1

1 0 B G = A+B G = A+B+1  (subtract)

1 1 All 1s G = A-1  (decrement) G = A  (transfer)



Full operation selection

§ Based on the values on the select bits and the 
carry bit, we can perform any number of basic 
arithmetic operations by manipulating what 
value is added to A.

Select Input Operation

S1 S0 Y Cin=0 Cin=1

0 0 All 0s G = A  (transfer) G = A+1  (increment)

0 1 B G = A+B  (add) G = A+B+1

1 0 B G = A+B G = A+B+1  (subtract)

1 1 All 1s G = A-1  (decrement) G = A  (transfer)



The “L” of ALU
§ We also want a circuit

that can perform
logical operations,
in addition to
arithmetic ones.

§ How do we tell
which operation
to perform?
ú Another select bit! 

§ If S2 = 1, then logic circuit block is activated.
§ Multiplexer is used to determine which block 

(logical or arithmetic) goes to the output.

4-to-1
mux

A

B

S0
S1

G

1

0

3

2



Single ALU Stage

Logic
circuit

S0
S1

Gi

S0
S1

Ai
Bi

Ai
Bi Arithmetic

circuit
S0
S1

Ai
Bi

Ci
Ci+1Ci

0

1

S2

V
N
Z

Gi

Gi



ALU block diagram
§ In addition to data inputs and outputs, this circuit 

also has: 
ú outputs indicating the different conditions,
ú inputs specifying the operation to perform (similar to Sub).

n-bit 
ALU

A0
A1
…
An-1

B0
B1
…
Bn-1

...

...

G0
G1
…
Gn-1

...

Data input A

Data input B

Data output G

Cin
S0

S2
S1

Carry input

Operation &
Mode select

Cout Carry output
Overflow indicator
Negative indicator
Zero indicator

V

N
Z



What about multiplication?

§ Multiplication (and division) operations are 
more complicated than other arithmetic 
(plus, minus) or logical (AND, OR) operations.

§ Three major ways that multiplication can be 
implemented in circuitry:
ú Layered rows of adder units.
ú An adder/shifter circuit with accumulator.
ú Booth’s Algorithm



Break



Multiplication

§ Revisiting grade 3 math…

123
x 456

12 3
x  456

1368

1 2 3
x  456

1368
912

1 23
x  456

1368
912
456

123
x  456

1368
912
456

56088



Binary Multiplication

§ And now, in binary…

101
x 110

10 1
x  110

110

1 0 1
x  110

110
000

1 01
x  110

110
000
110

101
x  110

110
000
110

11110

5*6 (unsigned)

Result: 30



Binary Multiplication 

§ Or seen another way….

101
x 110

101
x  1 10

000
101
101

101
x 1 1 0

000
101

101
x  110

000
101
101

11110

101
x 11 0

000



Binary Multiplication



Implementation

§ Implementing this 
in circuitry involves 
the summation of 
several AND terms.
ú AND gates combine 

input signals.
ú Adders combine the 

outputs of the AND 
gates.



Multiplication

§ This implementation
results in an array of 
adder circuits to make
the multiplier circuit.

§ This can get a little
expensive as the size
of the operands grows.
ú N-bit numbers àO(1) clock cycles, but O(N2) size.

§ Is there an alternative to this circuit? 



Accumulator circuits

§ What if you could perform each stage of the 
multiplication operation, one after the other?
ú This circuit would only

need a single row of
adders and a couple
of shift registers.

ú How wide does
register R have
to be?

ú Is there a simpler
way to do this?

Adder

Register R

Shift Left 1

Shift Left 1

Register Y

Register X

1 x n AND

cout



Sign Extension

§ To subtract 4-bit number from 8-bit number….
§ How do we convert a 4-bit two’s complement 

number to 8-bit?
§ Sign extend: replicate most significant bit

§ Arithmetic shift right: shift right and replicate 
sign bit (you saw this in lab!)

0101 à 0000 0101
(5) (still 5)

1001 à 1111 1001
(-7) (still -7)



Booth’s Algorithm

§ Devised as a way to take advantage of circuits 
where shifting is cheaper than adding, or where 
space is at a premium.
ú Based on the premise that when multiplying by certain 

values (e.g. 99), it can be easier to think of this 
operation as a difference between two products. 

§ Consider the shortcut method when multiplying a 
given decimal value X by 9999:
ú X*9999 = X*10000 – X*1

§ Now consider the equivalent problem in binary:
ú X*001111 = X*010000 – X*1



Booth’s Example in Decimal

§ Compute 999 x 5 à
ú 1000 x 5 – 1 x 5  à 5,000 – 5 = 4,995

§ Compute 99,900 x 5 à
ú 100,000 x 5 – 100 x 5 = 500,000 – 500 = 499,500

§ Compute 999,099 x 5 à
ú 1,000,000 x 5 – 1,000 x 5 à 5,000,000 – 5,000 = 

4,995,000
ú 100 x 5 – 1 x 5 à 500 – 5 = 495
ú 4,995,000 + 495 = 4,995,495



Booth’s Algorithm

§ This idea is triggered on cases where two 
neighboring digits in an operand are 
different.

§ Go through digits from n-1 to 0
ú If digits at i and i-1 are 0 and 1, the multiplicand 

is added to the result at position i. 
ú If digits at i and i-1 are 1 and 0, the multiplicand 

is subtracted from the result at position i. 

§ The result is always a value whose size is the 
sum of the sizes of the two multiplicands.



Booth’s Algorithm

§ Example:
01010010

x  00011110

01010010
+ 111110101110

0100110011100

B
A

Subtract B 
from here 
(add –B)

Add B here

Sign extend this 
before adding



Booth’s Algorithm

§ We need to make this work in hardware. 
ú Option #1: Have hardware set up to compare 

neighbouring bits at every position in A, with 
adders in place for when the bits don’t match.

ú Problem: This is a lot of hardware, which Booth’s 
Algorithm is trying to avoid.

ú Option #2: Have hardware set up to compare tw0 
neighbouring bits, and have them move down 
through A, looking for mismatched pairs.

ú Problem: Hardware doesn’t move like that. Oops.



Booth’s Algorithm

§ Still need to make this work in hardware… 
ú Option #3: Have hardware set up to compare tw0 

neighbouring bits in the lowest position of A, and 
looking for mismatched pairs in A by shifting A to 
the right one bit at a time.

ú Solution! This could work, but the accumulated 
solution P would have to shift one bit at a time as 
well, so that when B is added or subtracted, it’s 
from the correct position.



Booth’s Algorithm
§ Steps in Booth’s Algorithm:

1. Designate the two multiplicands as A & B, and the 
result as some product P.

2. Add an extra zero bit to the right-most side of A.
3. Repeat the following for each original bit in A:

a) If the last two bits of A are the same, do nothing.
b) If the last two bits of A are 01, then add B to the highest 

bits of P.
c) If the last two bits of A are 10, then subtract B from the 

highest bits of P.
d) Perform one-digit arithmetic right-shift on both P and A.

4. The result in P is the product of A and B.

Note: unlike the 

accumulator, the 

bits here are being 

shifted to the right!



Booth’s Algorithm Example

§ Example: (-5) * 2

§ Steps #1 & #2:
ú A = -5 à 11011

  Add extra zero to the right       à A = 11011 0

ú B = 2 à 00010
ú -B = -2 à 11110
ú P = 0 à 00000 00000



Booth’s Algorithm Example

§ Step #3 (repeat 5 times):
ú Check last two digits of A:

1101 10

ú Since digits are 10, subtract B from the most 
significant digits of P:

P 00000 00000
-B +11110

P’ 11110 00000

ú Arithmetic shift P and A one bit to the right:
  A = 111011 P = 11111 00000

A = 11011 0
P = 00000 00000



Booth’s Algorithm Example

§ Step #3 (repeat 4 more times):
ú Check last two digits of A:

1110 11

ú Since digits are 11, do nothing to P.
ú Arithmetic shift P and A one bit to the right:

  A = 111101 P = 11111 10000

A = 11101 1
P = 11111 00000



Booth’s Algorithm Example

§ Step #3 (repeat 3 more times):
ú Check last two digits of A:

1111 01

ú Since digits are 01, add B to the most significant 
digits of P:

P 11111 10000
+B +00010

P’ 00001 10000

ú Arithmetic shift P and A one bit to the right:
  A = 111110 P = 00000 11000

A = 11110 1
P = 11111 10000



Booth’s Algorithm Example

§ Step #3 (repeat 2 more times):
ú Check last two digits of A:

1111 10

ú Since digits are 10, subtract B from the most 
significant digits of P:

P 00000 11000
-B +11110

P’ 11110 11000

ú Arithmetic shift P and A one bit to the right:
  A = 111111 P = 11111 01100

A = 11111 0
P = 00000 11000



Booth’s Algorithm Example

§ Step #3 (final time):
ú Check last two digits of A:

1111 11

ú Since digits are 11, do nothing to P:
ú Arithmetic shift P and A one bit to the right:

  A = 111111 P = 11111 10110

§ Final product: P = 111110110
= -10

A = 11111 1
P = 11111 01100



Reflections on multiplication

§ A popular version of this algorithm involves 
copying A into the lower bits of P, so that the 
testing and shifting only takes place in P.
ú Also good for maintaining the original value of A.

§ Multiplication isn’t as common an operation as 
addition or subtraction, but occurs enough that 
its implementation is handled in the hardware, 
rather than by the CPU.

§ Most common multiplication and division 
operations are powers of 2. For this, the shift 
register is used instead of the multiplier circuit.



Function Unit

§ So where do A and 
B come from?

AG select B

V,C,N,Z ALU Shifter

B
S2:0,Cin

MuxB select01

H select

IR IL

MuxF select01

G H

n

n n

F

Address out
Data out

Constant in

A B



aka: the register file and main memory

More on this next time

The “Storage Thing”


