
Lecture 5:
Sequential Circuit
Design

Circuits using flip-flops

§ Now that we know
about flip-flops and
what they do, how do
we use them in circuit
design?

§ What’s the benefit in using
flip-flops in a circuit at all?

Combinational
Circuit

Inputs Outputs

Storage
Units

We are here

Processors
Finite State
Machines

Arithmetic
Logic Units

Devices Flip-flops

Circuits

Logic Gates

Transistors

Assembly Language

Example #1: Registers

Shift registers

§ A series of D flip-flops can store a multi-bit
value (such as a 16-bit integer, for example).

§ Data can be shifted into this register one bit
at a time, over 16 clock cycles.
ú Known as a shift register.

D0 Q

Q

D15 Q

Q

D1 Q

Q

D2 Q

Q

Clk

SI

Shift registers

§ Illustration: shifting in 0101010101010101

D0 Q

Q

D15 Q

Q

D1 Q

Q

D2 Q

Q

Clk

SI

0101

Shift registers

§ Illustration: shifting in 0101010101010101

§ After 16 clock cycles….

D0 Q

Q

D15 Q

Q

D1 Q

Q

D2 Q

Q

Clk

SI
1 10 0

Load registers

§ One can also load a register’s values all at
once, by feeding signals into each flip-flop:
ú In this example: a 4-bit load register.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Clk

D0 D1 D2 D3

Load registers

§ To control when this register is allowed to
load its values, we introduce the D flip-flop
with enable:

D Q

Q

EN

D Q

Q

D

EN

Clk

Load registers

§ To control when this register is allowed to
load its values, we introduce the D flip-flop
with enable:

§ It’s a MUX!

D Q

Q

EN

D Q

Q

D

EN

Clk

0

1

Load registers

§ Implementing the register with these special
D flip-flops will now maintain values in the
register until overwritten by setting EN high.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Clk

D0 D1 D2 D3

Write

EN EN EN EN

Example #2: Counters

Counters

§ Consider the T flip-flop:
ú Output is inverted when

input T is high.
§ What happens when a

series of T flip-flops are
connected together in
sequence?

§ More interesting:
Connect the output of
one flip-flop to the clock
input of the next!

T Q

Q

D

Clk

Q

Q

T

Counters

§ This is a 4-bit ripple counter, which is an
example of an asynchronous circuit.
ú Timing isn’t quite synchronized with the rising

clock pulse à hard to know when output is ready.
ú Cheap to implement, but unreliable for timing.

T Q

Q

T Q

Q

T Q

Q

T Q

Q

Q0 Q1 Q2 Q3
1

Counters

§ Timing diagram
ú Note how propagation delay increases for later Qs

Q0

C

Q1

Q2

T Q

Q

T Q

Q

T Q

Q

T Q

Q

Q0 Q1 Q2 Q3
1

C

Q3

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

0

0

0

1

0

1

0

1

0

0

1

1

0

1

1

1

0

Counters

§ This is a synchronous counter, with a slight delay.
§ Each AND gate combine outputs of all previous

flip-flops
§ Each flip-flop only changes when all previous flip

flops are set

Q0 Q1T Q

Q

T Q

Q

Q3T Q

Q

T Q

Q

Q2W
r
i
t
e

Clk

It’s time for…

§ The Count!

Example #3: Counters

§ Counters are often implemented with a
parallel load and clear inputs.
ú Loading a counter value is used for countdowns.

D Q

Q

D Q

Q

Clk

R0
R1

0
1

0
1

Load
Write

Clear

State Machines

Designing with flip-flops

§ Counters and registers
are examples of how
flip-flops can implement
useful circuits that store
values.

§ How do you design these circuits?
§ What would you design with these circuits?

Designing with flip-flops
§ Sequential circuits are the basis for memory,

instruction processing, and any other
operation that requires the circuit to
remember past data values.

§ These past data values are also called the
states of the circuit.

§ Sequential circuits use combinational logic to
determine what the next state of the system
should be, based on the past state and the
current input values:

input + prev state à next state

State example: Counters

§ With counters, each state is the current
number that is stored in the counter.

§ On each clock tick, the circuit transitions from
one state to the next, based on the inputs.

000

001 010 011

100

111 110 101

0

1
1 1

1

1

11

1

0 0 0

0

0 0 0

zero

one two three

four

seven six five

State Tables
§ State tables help to

illustrate how the
states of the circuit
change with various
input values.
ú Transitions are

understood to take
place on the clock
ticks

ú (e.g., rising edge)

State Write State

zero 0 zero

zero 1 one

one 0 one

one 1 two

two 0 two

two 1 three

three 0 three

three 1 four

four 0 four

four 1 five

five 0 five

five 1 six

six 0 six

six 1 seven

seven 0 seven

seven 1 zero

State Tables
§ Same table as on

the previous slide,
but with the
actual flip-flop
values instead of
state labels.
§ Note: Flip-flop

values are both
inputs and
outputs of the
circuit here.

F1 F2 F3 Write F1 F2 F3
0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 1 0

0 1 0 1 0 1 1

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 1 0 0

1 0 0 1 1 0 1

1 0 1 0 1 0 1

1 0 1 1 1 1 0

1 1 0 0 1 1 0

1 1 0 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 0 0 0

Finite State Machines
and this brings us to…

As seen in other courses…

§ You may have seen finite state machines
before, but in a different context.
ú Used mainly to describe the grammars of a

language, or to model sequence data.

§ In CSCB58, finite state machines are models
for an actual circuit design.
ú The states represent internal states of the circuit,

which are stored in the flip-flop values.

Finite State Machines (FSMs)
§ From theory courses…

ú A Finite State Machine is an abstract model that
captures the operation of a sequential circuit.

§ A FSM is defined (in general) as:
ú A finite set of states,
ú A finite set of transitions between states,

triggered by inputs to the state machine,
ú Output values that are associated with each state

or each transition (depending on the machine),
ú Start and end states for the state machine.

Example #1: Tickle Me Elmo

§ Remember how the
Tickle Me Elmo works!

Example #1: Tickle Me Elmo

§ Toy reacts differently each time it is squeezed:
ú First squeeze à “Ha ha ha…that tickles.”
ú Second squeeze à “Ha ha ha…oh boy.”
ú Third squeeze à “HA HA HA HA…HA HA HA HA…etc”

§ Questions to ask:
ú What are the inputs?
ú What are the states of this machine?
ú How do you change from one state to the next?
ú Who thought this is a good toy for children!?

Example #1: Tickle Me Elmo

Neutral

Tickles

OhBoy

GoCrazy

Squeeze

Squeeze

Squeeze

Squeeze

Time

Time

Time

More elaborate FSMs

§ Usually our FSM has more than one input,
and will trigger a transition based on certain
input values but not others.

§ Also might have input values that don’t cause
a transition, but keep the circuit in the same
state (transitioning to itself).

Example #2: Alarm Clock

§ Internal state description:
ú Starts in neutral state, until

timer signal goes off.
 Clock moves to alarm state.

ú Alarm state continues until:
 snooze button is pushed (move to snooze state)
 alarm is turned off (move to neutral state)
 timer goes off again (move to neutral state)

ú In snooze state, clock returns to alarm state when
the timer signal goes off again.

Example #3: Traffic Light

Red

Yellow Green

Change=1 Change=1

Change=1

Change=0 Change=0

Change=0

