Week 3: |
Logical Devices

We are here

Gates

[Transistors]

Building up from gates..

= Some common and more complex structures:

= Multiplexers (MUX)
Adders (half and full)

O

O Subtractors These are aII
combinational

= Comparators Circuits

= Decoders

* Seven-segment decoders

Combinational Circuits

= Combinational Circuits are any circuits where
the outputs rely strictly on the inputs.

= Everything we've done so far and what we’ll do today
is all combinational logic.

= Another category is sequential circuits that we
will learn in the next few weeks.

Karnaugh map review

= K-maps provide an illustration of a circuit’s
minterms (or maxterms), and a guide to how
neighbouring terms may be combined.

Y = A-B-CJ+|a-B-C + A-B-C|+(a-B-C

= B:C + A-C

Karnaugh map example

= Create a circuit with
fourinputs (2, B, C,
D), and two outputs
(X, Y):

The output X is high
whenever two or more
of the inputs are high.

The output Y is high

when three or more of
the inputs are high.

r—\r—\r—\r—\r—\r—\r—\r—\oooooooo:u
=~ P O O B P O O Pk O o kP o o s

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

P O B O B O B O B oo +r o +»r o +r o Db

Karnaugh map example

X =AB+ C-D+ B-D+ B-C+ A-D+ A-C

Alternative for X: Maxterms

Alternative for X: Maxterms

X = (A+C+D) - (B+C+D) - (A+B+C) - (A+B+D)

Karnaugh map example

Y = A‘'B'D+ B:C-D+ A-B-C+ A-C-D

Karnaugh map review

= Note: There are cases where no combinations
are possible. K-maps cannot help these cases.

= Example: Multi-input XOR gates.

Multiplexers

Logic devices

= Certain structures are common to many
circuits, and have block elements of their own.
= e.g., Multiplexers (short form: mux)
= Behaviour: Outputis X if Sis 0,and Y if Siis 1:
= Sisthe selectinput; Xand Y are the data inputs.

n specifies the g
number of bits. \I\
\I\ 0)

n

X—F—0 n

n

Y —/—1 Y —#—10

Multiplexer uses

= Muxes are very useful whenever you need to
select from multiple input values.

* YourTV has at least one!
You can select different
Input sources.

= More exampels:

surveillance video monitors

digital cable boxes

routers. BV 11EA

WbA-lieVv

Multiplexer design

o 4 O +d O —H O

o O H +dH O O A

o O o O A - o

Multiplexer design

Decoders

Decoders

= Decoders are essentially translators.

= Translate from the output of one circuit to the
input of another.

= Think of them as providing a mapping between
two different encodings!

= Example: Binary signal splitter
= Activates one of four

. A
output lines, based on 5

. . . X1 N O] B
a two-digit binary number. S -
(binary = “one-hot") X0 e i

Demultiplexers

= Related to decoders: demultiplexers.

= Does multiplexer operation, in reverse.

S S, S,

0]

1

2
\ &_I‘l‘_z

7-segment decoder

= Common and useful decoder application.

= Translate from a 4-digit binary number to the
seven segments of a digital display.

= Each output segment has a particular
logic that defines it.

0
—_— N
6
= Example: Segment 0O 4I lz
3

- Activate forvalues: 0, 2, 3, 5, 6, 7, 8, 9.

* In binary: 0000,0010,0011,0101,0110,0111,1000,
1001.

0
——

7-segment decoder 5|6|

1

= These segments are “active-low”, 4n2
meaning that setting it low turnsiton. “3
= Example: Displaying digits 0-9
= Assume input is a 4-digit binary number

= Segment 0 (top segment) is low whenever the
input values are 0000, 0010,0011,0101, 0110,

0111,10000r1001, and high whenever input
numberis 0001 or0100.

- This create a truth table and map like the

7-segment decoder

" HEX0 =X, X, "X, X,
+ X5 X, Xy X,
= But what about input

values from 1010 to
11117

0
0
0
0
0
0
0
0
1
1

o oo B B P B O O O O
o o B B O ©O = = O
P o B O B O B O = O
o o o o o Bk o o =

“Don’t care” values

* |nput values that will never happen or are not
meaningful in a given design, and so their output
values do not have to be defined.

Recorded as ‘X' in truth-tables and K-Maps.

* |nthe K-maps we can think of these “"don’t care”
values as either 0 or 1 depending on what helps
us simplify our circuit.

Note you do NOT change the X witha 0 or 1, you just
include it in a grouping as needed.

“Don’t care” values

= New equation for HEXO:

+ X, ‘X, ‘X,

P B O O O O O O o o
o oo B B P B O O O O
o o B B O ©O = = O
P o B O B O B O = O
o o o B P O O O o

HEX1 =X, ‘X, ‘X, +

X, ‘X, ‘X,

P P O O O O O o o o
oo o r B P BPrOoO O O O
o o B P o O = =B O
P o B O B O B O = O
o O O O o o o =+ o

HEX2 =X, ‘X, ‘X,

The final 7-seg decoder

* Thereare many kinds _ | [HBEXC
f decoder I - T
of decoders. o] 3 i
= They all look the S |—HEX3
for th 1 P |—uex2

same, except for the Z
: v.—J1 ~ pP—HEX1

0

inputs and outputs. -

= Of course, unlike other
devices, the internals differs from decoder
to decoder.

Another “don’t care” example

» Climate control fan:

The fan should turn on (F) if the temperature is
hot (H) or if the temperature is cold (C), depending
on whether the unit is set to A/C or heating (2).

H
0
0
0
0
1
1
1
1

R P O O Fr B O O 0
P OO r O r O +~ O ¥

Adder circuits

Adders

= Also known as binary adders.

Small circuit devices that add two digits together.
Combined together to create iterative
combinational circuits.

= Types of adders:
Half adders (HA)
Full adders (FA)

Ripple Carry Adder
Carry-Look-Ahead Adder (CLA)

Review of Binary Math

= Each digit of a decimal number represents a
power of 10:

[258 = 2x10% + 5x10! + 8x100]

= Each digit of a binary number represents a
power of 2:

é)

01101, = Ox2% + 1x23 + 1x2° + 0x2! + 1x2¢
= 1359

Unsigned binary addition

" 27+53
27=00011011
£3=00110101

¥

111111

00011011
+00110101
01010000

m s

01010000

Unsigned binary addition

" 27+ 53 " 95+ 181
27=00011011 01011111
53=00110101 +10110101 gy
‘ ‘ we can only
111111 11111111 represent
00011011 010111171 KL
numbers o
+00110101 C“W“t +10110101 EePL

01010000

h 4

01010000

ﬂooomwo

g ¢

00010100

Half Adders

= A 2-input, 1-bit width binary adder that performs
the following computations:

X 0 0 1 1 This is
+Y +0 +1 +0 +1 a truth
cs 00 01 01 10 table!

= A half adder adds two bits X Y
to produce a two-bit sum. ||

* The sum is expressed as a c— HA
sum bit S and a carry bit C.

Half Adder Implementation

= Equations and circuits for half adder units are
easy to define (even without Karnaugh maps)

(_ _)
XY + XY

XDY

Full Adders v

c— FA |—z¢

= Similar to half-adders, but
with another input Z, which |
represents a carry-in bit. >
= Cand Z are sometimes labeledas C_ . and C, ..

= When Z is o, the unit behaves exactly like a

half adder.
. X o 0 1 1
" When Zis 1. 1Y 10 +1 40 +1
+ 7 +1 +1 +1 +1
cs 01 10 10 11

Full Adder Design

=X DY D Z

S

XY + X2 + Y4

C:

Full Adder Design

* The Cterm can also be XY

rewritten as: i(:d:{
C=XY+ (X®Y) 7
p
= Two terms come from this: G%’ Cin
o X Y = carry generate (G). E?
© X@Y = carry propagate (P).

= Results in this circuit 2

Ripple-Carry Binary Adder

= Full adder units are chained together in order
to perform operations on signal vectors.

X Y
4,|' + X5 Y5 X, Y, x Yl XOY
| | | |
<«—| Adder [«— “<—|FA|<—|FA|<—|FA|<—||:A|<—
4+ 53 Sz Sl So

S

Break

ON A SCALE OF 1o 10,
HOW LIKELY IS IT THAT
THIS QUESTON 1S
USING BINARY?

| ..u?
WHATS A Y ?

R

The role of C,,

= Why can’t we just have a half-adder for the
smallest (right-most) bit?

= We could, if we were only interested in
addition. But the last bit allows us to do
subtraction as well!

= Time for a little fun with subtraction!

XYy XY, XY XY,

Lets Have Fun

1. Find a partner.

2. Have each
person choose
a five-digit
binary number.
3. Take the smaller
number, and invert all the digits.

4. Add this inverted number to the larger one.
5. Add one to the result.

Subtractors

= Subtractors are an extension of adders.
= Basically, perform addition on a negative number.

= To do subtraction, we need to understand
representation of negative binary numbers.

» Unsigned numbers

= Data bits store the positive version of the number.
» Sign-and-magnitude

= Another, separate bit exists for the sign (the sign bit).
= Signed:

- Store a 2's complement negative number using all bits.

Two’s complement

= Need to know how to get 1's complement:

Given number X with n bits, take (2"-1) -X
Invert individual bits (bitwise NOT).

01001101
11111111

9
9

10110010
00000000

» 2's complement = (2's complement + 1)

01001101
11111111

9
9

10110011
00000001

'\

S

-

Know
this!

= Note: Adding a 2's complement number to the
original number produces a result of zero.

Signhed representations

Decimal Unsigned Signed 2’'s

111
110
101
100
011
010
001
000

'
6
5
4
3
2
1
0

Practice 2°s complement!

= Assume 4-bits signed representation, write
the following decimal numbers in binary:
02 => 0010
5.1 = 1111
50 => 0000

o 8 => Not possible to represent in 4 digits!

o -8 => 1000

= What is max positive number? =>7 (or 24 -1)

Rules about signhed numbers

= When thinking of signed binary numbers, there are a few
useful rules to remember:

The largest positive binary number is a zero followed by all ones.
The binary value for -1 has ones in all the digits.

The most negative binary number is a one followed by all zeroes.

» There are 2" possible values that can be stored in an n-digit
binary number.

2"* are negative, 2"*-1 are positive,
and one is zero.

For example, given an 8-bit binary number:

There are 256 possible values

One of those values is zero m
128 are negative values (11111111 t0 10000000)
127 are positive values (00000001 to 01111111)

Signhed subtraction

= Negative numbers are generally stored in 2's
complement notation.

Reminder: 1's complement = bits are the bitwise
NOT of the equivalent positive value.

2's complement = 1's complement value plus
one; results in zero when added to equivalent
positive value.
= Subtraction can then be performed by using
the binary adder circuit with negative
numbers.

At the core of subtraction

= Subtraction of a number is simply the
addition of its negative value.

= This the negative value is found using the 2's
complement process.

©7-3=7+(3)
© 3-2=-3+(-2)

Signed Subtraction example

" 73 " 372
0111 1101
-0011 -0010
¥ ¥
0111 1101
discarded +1101 discarded +1110
- [o100 o1t

h h

What about bigger numbers

" 53-27 " 27-153

00110101 00011011
~00011011 ~00110101

¥ ¥
00110101 00011011
discarded +11100101 discarded +11001011
\-Tooo11010 o 1100110

h h

00011010 = 264, 11100110 = -264,

Subtraction circuit

= 4-bit subtractor: X-Y Feed 1 as Carry-In in

the least significant FA.
= Xplus 2's complement of Y °

= X plus 1's complement of Y plus 1

Use NOT gates to
getthe1's
complement of Y.

Addition/Subtraction circuilt

Y3 Y2 Yl YO Sub

d

If Sub is 0 => addition.
If Sub is 1 => subtraction.

= The full adder circuit can be expanded to
incorporate the subtraction operation

Remember: 2’s complement = 1’s complement + 1
We connect Sub to Cin

Food for Thought

= What happens if we add these two positive signed
binary numbers 0110+ 0011 (i.e.,, 6+ 3) ?

Theresultis 1001.
But that is a negative number (-7)! ®

= What happens if we add the two negative numbers
1000+1111 (i.e.,, =8 +(-1))?
The resultis 0111 with a carry-out. ®
= We need to know when the result might be wrong.
This is usually indicated in hardware by the Overflow flag!
More about this when we’ll talk about processors.

Subtracting unsigned numbers

= General algorithm for X -Y:

Get the 2’s complement of the subtrahendY (the
term being subtracted).

Add that value to the minuend X (the term being
subtracted from).

If there is an end carry (C,; is high), the final
result is positive and does not change.

If there is no end carry (C,,. is low), get the 2's

complement of the result and add a negative
sign to it (or set the sign bit high).

Unsignhed subtraction example

" 53—27 " 2/—53
00110101 00011011
-00011011 -00110101

¥ ¥

Unsignhed subtraction example

" 53-27 " 27-53
00110101 00011011
-00011011 -00110101
00110101 00011011
carrybit +11100101 nocarrybit +11001011
\-Tooo11010 o 1100110
[— [

signbit 1 77011010 Signbit 1 _ 10011010

Comparators

Comparators

= Acircuit that takes in
two input vectors, and
determines if the first
is greater than, less
than or equal to the
second.

= How does one make
that in a circuit?

Basic Comparators 1? 1|-=»

A=B
= Consider two binary numbers A<B

A and B, where A and B are one bit long.
= The circuits for this would be:

A5 Wi EE]
A>B: —

A B
A<B: _

A B

Basic Comparators AA, BB,

= What if A and B are two bits long?

" The terms for this circuit for haveto
expand to reflect the second signal. A>B

= Forexample:

Comparator

A==B: (Al 'Bl‘l'zl 'El) ’ (AO 'Bo+zo 'Eo)

Make sure that the values | ‘ Make sure that the values

of bit 1 are the same of bit 0 are the same

Basic Comparators A.B, BB,

_ _ _ Comparator
= What about checking if A is greater
or less than B? A=B
A>B
A<B
= A>B:
Check if first bit If not, check that the ...and then do the
satisfies condition first bits are equal... 1-bit comparison

= A<B:

Basic Comparators Bafo BiBo

_ _ _ _ Comparator
= The final circuit equations for two-
input comparators are shown below. a1
Note the sections they have in common! A<B
A==B: (Al 'Bl‘l'zl 'El) ’ (AO 'Bo+zo 'Eo)
A>B: | A, -B; + | (A; ‘Bi+A, ‘By)| - (A, 'By)

A<B: Kl 'Bl + (A1 -Bl-I—Kl °_B1) | (zo 'Bo)

General Comparators

= The general circuit for comparators requires
you to define equations for each case.

= Case #1: Equality

If inputs A and B are equal, then all bits must be
the same.

Define X; for any digit i: X, = A. .
* (equality for digit 1)

Equality between A and B is defined as:

A==B : X, X, '..'X

n

Comparators

= Case#2: A > B

The first non-matching bits occur at bit i, where
A;=1 and B;=0. All higher bits match.

Using the definition for X; from before:

‘B, + X

A>B = A

n

— — n
ApiBag + o+ BgBg Il Xy

= Case#3: A < B

The first non-matching bits occur at bit i, where
A,=0 and B;=1. Again, all higher bits match.

— — n
nBa + Xy BAygBug + .+ AgBoill Xy

A<B = A

Example for 4 bits

A=B

A=B = X; X, X; ‘X,

A>B

A3':§3 + X3 'AZ .EZ + X3'X2 .Al .El + X3'X2'Xl 'Ao'go

A< B

Comparator truth table

]
A
<
]
I
<
]
v
<

Ao B; By

A

= Given two input

vectors of size

n=2, output of
circuit is shown

at right.

Comparator example (cont’d)

A<B:

LT = B, A, + By'B; ‘A, + By-Ay A

Comparator example (cont’d)

Comparator example (cont’d)

A>B:

Comparators 1in Verilog

* Implementing a comparator can be done by
butting together the circuits as shown in the
orevious slide, or by using the comparison
operators to make things a little easier:

module comparator 4 bit (a gt b, a 1t b, a eq b, a, b);

input [3:0] a, b;
output a gt b, a 1t b, a eq b;

assign a gt b
assign a 1t b
assign a eq b

(a > b);

endmodule

Comparing larger numbers

= As numbers get larger, the comparator circuit
gets more complex.

= At a certain level,
it can be easier
sometimes to just
process the result
of a subtraction
operation instead.

Easier, less circuitry,
just not faster.

