Week 3: Logical Devices

We are here

Building up from gates...

- Some common and more complex structures:
 - Multiplexers (MUX)
 - Adders (half and full)
 - Subtractors
 - Comparators
 - Decoders
 - Seven-segment decoders

These are all combinational circuits

Combinational Circuits

- Combinational Circuits are any circuits where the outputs rely strictly on the inputs.
 - Everything we've done so far and what we'll do today is all combinational logic.
- Another category is sequential circuits that we will learn in the next few weeks.

Karnaugh map review

 K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{A \cdot B \cdot C} + A \cdot \overline{B \cdot C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C}$$
$$= B \cdot C + A \cdot \overline{C}$$

Karnaugh map example

- Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y):
 - The output X is high whenever two or more of the inputs are high.
 - The output Y is high when three or more of the inputs are high.

А	в	С	D	х	Y
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Karnaugh map example

Χ:

	<u></u> . <u></u> .	<u></u> . D	C ·D	C ∙D
A ⋅ B	0	0	1	0
Ā·B	0	1	1	1
А∙В	1	1		1
A ∙B	0	1	1	1

$$X = A \cdot B + C \cdot D + B \cdot D + B \cdot C + A \cdot D + A \cdot C$$

Alternative for X: Maxterms

5 7	
$\mathbf{\nabla}$	
4 4	\mathbf{O}

	<u>c</u> . <u></u>	<u></u> . D	C ·D	C ∙D
A ⋅ B	0	0	1	0
А∙в	0	1	1	1
А∙в	1	1	1	1
A ∙B	0	1	1	1

Alternative for X: Maxterms

Χ:

	C+D	C+D	C+D	C+D
A+B	0	0	1	0
A+B	0	1	1	1
A+B	1	1	1	1
Ā+B	0	1	1	1

$$X = (A+C+D) \cdot (B+C+D) \cdot (A+B+C) \cdot (A+B+D)$$

Karnaugh map example

Y :

	<u></u> . <u></u> .	<u></u> . D	C ∙D	C ∙D
Ā·B	0	0	0	0
Ā·в	0	0	1	0
Α·Β	0	1	1	1
A ∙B	0	0	1	0

$$Y = A \cdot B \cdot D + B \cdot C \cdot D + A \cdot B \cdot C + A \cdot C \cdot D$$

Karnaugh map review

- <u>Note</u>: There are cases where no combinations are possible. K-maps cannot help these cases.
- Example: Multi-input XOR gates.

Multiplexers

Logic devices

- Certain structures are common to many circuits, and have block elements of their own.
 - e.g., Multiplexers (short form: mux)
 - Behaviour: Output is X if S is 0, and Y if S is 1:
 - S is the select input; X and Y are the data inputs.

Multiplexer uses

- Muxes are very useful whenever you need to select from multiple input values.
- Your TV has at least one! You can select different input sources.
- More exampels:
 - surveillance video monitors
 - digital cable boxes
 - routers.

MPV-116A

Multiplexer design

х	Y	S	М
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiplexer design

Х	Y	S	М
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$M = Y \cdot S + X \cdot \overline{S}$$

Decoders

Decoders

- Decoders are essentially translators.
 - Translate from the output of one circuit to the input of another.
 - Think of them as providing a mapping between two different encodings!
- Example: Binary signal splitter
 - Activates one of four output lines, based on a two-digit binary number. (binary → "one-hot")

Demultiplexers

- Related to decoders: demultiplexers.
 - Does multiplexer operation, in reverse.

7-segment decoder

6

3

5

- Common and useful decoder application.
 - Translate from a 4-digit binary number to the seven segments of a digital display.
 - Each output segment has a particular logic that defines it.
 - Example: Segment 0
 - Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.
 - In binary: 0000, 0010, 0011, 0101, 0110, 0111, 1000, 1001.
 - First step: Build the truth table and K-map.

7-segment decoder

- These segments are "active-low", meaning that setting it low turns it on.
- Example: Displaying digits 0-9
 - Assume input is a 4-digit binary number
 - Segment 0 (top segment) is low whenever the input values are 0000, 0010, 0011, 0101, 0110, 0111, 1000 or 1001, and high whenever input number is 0001 or 0100.

0

6

3

This create a truth table and map like the following....

7-segment decoder

X 3	X ₂	X 1	X 0	HEX _o
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_1 \cdot \overline{\mathbf{x}}_0$	$\overline{\mathbf{x}}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	1	0	0
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	1	0	0	0
$\mathbf{X}_3 \cdot \mathbf{X}_2$?	?	?	?
$\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$	0	0	?	?

- $HEX0 = X_3 \cdot X_2 \cdot X_1 \cdot X_0$ $+ X_3 \cdot X_2 \cdot X_1 \cdot X_0$
- But what about input values from 1010 to 1111?

"Don't care" values

- Input values that will never happen or are not meaningful in a given design, and so their output values do not have to be defined.
 - Recorded as 'X' in truth-tables and K-Maps.
- In the K-maps we can think of these "don't care" values as either 0 or 1 depending on what helps us simplify our circuit.
 - Note you do NOT change the X with a 0 or 1, you just include it in a grouping as needed.

"Don't care" values

New equation for HEX0:

	$\overline{\mathbf{x}}_1 \cdot \overline{\mathbf{x}}_0$	$\overline{\mathbf{x}}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	1	0	0
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	1	0	0	0
$\mathbf{X}_3 \cdot \mathbf{X}_2$	x	x	х	x
$\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$	0	0	х	х

$$HEXO = \overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2} \cdot \overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0} + \mathbf{x}_{2} \cdot \overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$$

Again for segment 1

X 3	X ₂	X 1	X 0	HEX1
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_1 \cdot \overline{\mathbf{x}}_0$	$\overline{\mathbf{x}}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	0	0	0
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	0	1	0	1
$\mathbf{X}_3 \cdot \mathbf{X}_2$	х	x	х	x
$\mathbf{X}_3 \cdot \overline{\mathbf{X}}_2$	0	0	х	х

$$HEX1 = \mathbf{X}_2 \cdot \overline{\mathbf{X}}_1 \cdot \mathbf{X}_0 + \mathbf{X}_2 \cdot \mathbf{X}_1 \cdot \overline{\mathbf{X}}_0$$

Again for segment 2

X 3	X ₂	X 1	X 0	HEX ₂
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_1 \cdot \overline{\mathbf{x}}_0$	$\overline{\mathbf{x}}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \mathbf{x}_0$	$\mathbf{x}_1 \cdot \overline{\mathbf{x}}_0$
$\overline{\mathbf{X}}_3 \cdot \overline{\mathbf{X}}_2$	0	0	0	1
$\overline{\mathbf{X}}_3 \cdot \mathbf{X}_2$	0	0	0	0
$\mathbf{X}_3 \cdot \mathbf{X}_2$	х	х	х	x
$\mathbf{x}_3 \cdot \overline{\mathbf{x}}_2$	0	0	x	x

$$\mathbf{HEX2} = \overline{\mathbf{X}}_2 \cdot \mathbf{X}_1 \cdot \overline{\mathbf{X}}_0$$

The final 7-seg decoder

- There are many kinds of decoders.
- They all look the same, except for the inputs and outputs.

Another "don't care" example

- Climate control fan:
 - The fan should turn on (F) if the temperature is hot (H) or if the temperature is cold (C), depending on whether the unit is set to A/C or heating (A).

н	С	A	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

	<u>н</u> .С	н∙с	н∙с	н·С
Ā	0	1	X	0
A	0	0	X	1
	F =	A • H +	Ā·C	

Adder circuits

Adders

- Also known as binary adders.
 - Small circuit devices that add two digits together.
 - Combined together to create iterative combinational circuits.
- Types of adders:
 - Half adders (HA)
 - Full adders (FA)
 - Ripple Carry Adder
 - Carry-Look-Ahead Adder (CLA)

Review of Binary Math

 Each digit of a decimal number represents a power of 10:

 $258 = 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0$

 Each digit of a binary number represents a power of 2:

$$01101_{2} = 0x2^{4} + 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0}$$
$$= 13_{10}$$

Unsigned binary addition

Unsigned binary addition

Half Adders

 A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C.

Half Adder Implementation

 Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

Full Adders

 Similar to half-adders, but with another input Z, which represents a carry-in bit.

- C and Z are sometimes labeled as C_{out} and C_{in}.
- When Z is o, the unit behaves exactly like a half adder.
- When Z is 1:
Full Adder Design

Х	Y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

С	¥ · Z	ע ∙צ	Υ·Ζ	Y ·Z
x	0	0	1	0
x	0	1	1	1
S	$\overline{\mathbf{v}} \cdot \overline{\mathbf{z}}$	$\overline{\mathbf{v}} \cdot \mathbf{z}$	Y • Z	$\mathbf{Y} \cdot \overline{\mathbf{Z}}$

S	<u>Y</u> ·Z	<u>¥</u> ·z	Υ·Ζ	Y ·Z
x	0	1	0	1
х	1	0	1	0

$$C = X \cdot Y + X \cdot Z + Y \cdot Z$$

$$S = X \oplus Y \oplus Z$$

Full Adder Design

 The C term can also be rewritten as:

 $C = X \cdot Y + (X \oplus Y) \cdot Z$

- Two terms come from this:
 - X · Y = carry generate (G).
 - X⊕Y = carry propagate (P).
- Results in this circuit ightarrow

Ripple-Carry Binary Adder

 Full adder units are chained together in order to perform operations on signal vectors.

Break

ON A SCALE OF 1 TO 10, HOW LIKELY IS IT THAT THIS QUESTION IS USING BINARY? ...4? WHAT'S A 4 ?

The role of $C_{\mbox{in}}$

- Why can't we just have a half-adder for the smallest (right-most) bit?
- We could, if we were only interested in addition. But the last bit allows us to do subtraction as well!
 - Time for a little fun with subtraction!

Lets Have Fun

- 1. Find a partner.
- Have each person choose a five-digit binary number.

- Take the smaller number, and invert all the digits.
- 4. Add this inverted number to the larger one.
- 5. Add one to the result.
- 6. Check what the result is...

Subtractors

- Subtractors are an extension of adders.
 - Basically, perform addition on a negative number.
- To do subtraction, we need to understand representation of negative binary numbers.
- Unsigned numbers
 - Data bits store the positive version of the number.
- Sign-and-magnitude
 - Another, separate bit exists for the sign (the sign bit).
- Signed:
 - Store a 2's complement negative number using all bits.
 - More common, and what we use for this course.

Two's complement

- Need to know how to get 1's complement:
 - Given number X with n bits, take (2ⁿ-1) -X
 - Invert individual bits (bitwise NOT).

01001101 → 10110011 1111111 → 0000001

<u>Note</u>: Adding a 2's complement number to the original number produces a result of zero.

this!

Signed representations

Decimal	Unsigned	Signed 2's
7	111	
6	110	
5	101	
4	100	
3	011	011
2	010	010
1	001	001
0	000	000
-1		111
-2		110
-3		101
-4		100

Practice 2's complement!

- Assume 4-bits signed representation, write the following decimal numbers in binary:
 - □ <u>2</u> => 0010
 - **-1** => 1111
 - □ ₀ => 0000
 - 8 => Not possible to represent in 4 digits!
 - -8 => 1000
- What is max positive number? => 7 (or 2⁴⁻¹ -1)
- What is min negative number? =>

$$-8$$
 (or -2^{4-1})

Rules about signed numbers

- When thinking of signed binary numbers, there are a few useful rules to remember:
 - The largest positive binary number is a zero followed by all ones.
 - The binary value for -1 has ones in all the digits.
 - The most negative binary number is a one followed by all zeroes.
- There are 2ⁿ possible values that can be stored in an n-digit binary number.
 - 2ⁿ⁻¹ are negative, 2ⁿ⁻¹-1 are positive, and one is zero.
 - For example, given an 8-bit binary number:
 - There are 256 possible values
 - One of those values is zero
 - 128 are negative values (11111111 to 1000000)
 - 127 are positive values (0000001 to 0111111)

1 to 12**7**

-1 to -128

Signed subtraction

- Negative numbers are generally stored in 2's complement notation.
 - <u>Reminder:</u> 1's complement \rightarrow bits are the bitwise NOT of the equivalent positive value.
 - 2's complement → 1's complement value plus one; results in zero when added to equivalent positive value.
- Subtraction can then be performed by using the binary adder circuit with negative numbers.

At the core of subtraction

- Subtraction of a number is simply the addition of its negative value.
- This the negative value is found using the 2's complement process.

What about bigger numbers 53 - 27 27 - 5300110101 00011011 -00011011 -00110101 00110101 00011011 discarded +11100101+11001011 discarded 100011010 011100110 $00011010 = 26_{10}$ $11100110 = -26_{10}$

Subtraction circuit

- 4-bit subtractor: X Y
 - X plus 2's complement of Y

Feed 1 as Carry-In in the least significant FA.

X plus 1's complement of Y plus 1

Addition/Subtraction circuit

- The full adder circuit can be expanded to incorporate the subtraction operation
 - Remember: 2's complement = 1's complement + 1
 - We connect Sub to Cin

Food for Thought

- What happens if we add these two positive signed binary numbers 0110 + 0011 (i.e., 6 + 3)?
 - The result is 1001.
 - But that is a negative number (-7)! ③
- What happens if we add the two negative numbers 1000 + 1111 (i.e., -8 + (-1))?
 - The result is 0111 with a carry-out. 🟵
- We need to know when the result might be wrong.
 - This is usually indicated in hardware by the Overflow flag!
 - More about this when we'll talk about processors.

Subtracting unsigned numbers

- General algorithm for X Y:
 - Get the 2's complement of the subtrahend Y (the term being subtracted).
 - 2. Add that value to the minuend X (the term being subtracted from).
 - 3. If there is an end carry (C_{out} is high), the final result is positive and does not change.
 - 4. If there is no end carry (C_{out} is low), get the 2's complement of the result and add a negative sign to it (or set the sign bit high).

Unsigned subtraction example

■ 53-27 00110101 _00011011 27 - 53 00011011 -00110101 ↓

Unsigned subtraction example

53 – 27 27 - 5300011011 00110101 -00110101 -00011011 00110101 00011011 +11100101 +11001011 carry bit no carry bit 00011010 011100110 sign bit sign bit 00011010 -00011010 is low is high

Comparators

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

- Consider two binary numbers
 A and B, where A and B are one bit long.
- The circuits for this would be:

B

A=B

A>B

A<B

A

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.

• For example:

What about checking if A is greater or less than B?

- The final circuit equations for twoinput comparators are shown below.
 - Note the sections they have in common!

• A==B:
(A₁ · B₁+
$$\overline{A}_1$$
 · \overline{B}_1) · (A₀ · B₀+ \overline{A}_0 · \overline{B}_0)
• A>B:
A₁ · \overline{B}_1 + (A₁ · B₁+ \overline{A}_1 · \overline{B}_1) · (A₀ · \overline{B}_0)
• A\overline{A}_1 · B₁ + (A₁ · B₁+ \overline{A}_1 · \overline{B}_1) · (\overline{A}_0 · B₀)

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case #1: Equality
 - If inputs A and B are equal, then all bits must be the same.
 - Define X_i for any digit i:
 - (equality for digit i)

$$X_{i} = A_{i} \cdot B_{i} + \overline{A}_{i} \cdot \overline{B}_{i}$$

Equality between A and B is defined as:

$$A == B : X_0 \cdot X_1 \cdot ... \cdot X_n$$

Comparators

■ <u>Case #2:</u> A > B

- The first non-matching bits occur at bit i, where
 A_i=1 and B_i=0. All higher bits match.
- Using the definition for X_i from before:

$$A > B = A_n \cdot \overline{B}_n + X_n \cdot A_{n-1} \cdot \overline{B}_{n-1} + \dots + A_0 \cdot \overline{B}_0 \cdot \prod_{k=1}^n X_k$$

The first non-matching bits occur at bit i, where A_i=0 and B_i=1. Again, all higher bits match.

$$A < B = \overline{A}_n \cdot B_n + X_n \cdot \overline{A}_{n-1} \cdot B_{n-1} + \dots + \overline{A}_0 \cdot B_0 \cdot \prod_{k=1}^n X_k$$

Example for 4 bits

A=B

$$A=B = X_3 \cdot X_2 \cdot X_1 \cdot X_0$$

A > B

 $A_3 \cdot \overline{B}_3 + X_3 \cdot A_2 \cdot \overline{B}_2 + X_3 \cdot X_2 \cdot A_1 \cdot \overline{B}_1 + X_3 \cdot X_2 \cdot X_1 \cdot A_0 \cdot \overline{B}_0$

$$A < B$$

$$\overline{A}_3 \cdot B_3 + X_3 \cdot \overline{A}_2 \cdot B_2 + X_3 \cdot X_2 \cdot \overline{A}_1 \cdot B_1 + X_3 \cdot X_2 \cdot X_1 \cdot \overline{A}_0 \cdot B_0$$

Comparator truth table

 Given two input vectors of size n=2, output of circuit is shown at right.

Inputs					Outputs	
A_1	A 0	B_1	B_0	A < B	A = B	A > B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Comparator example (cont'd)

A < B:

	$\overline{B}_0 \cdot \overline{B}_1$	$\mathbf{B}_0 \cdot \overline{\mathbf{B}}_1$	$\mathbf{B}_0 \cdot \mathbf{B}_1$	$\overline{\mathbf{B}}_0 \cdot \mathbf{B}_1$
$\overline{\mathbf{A}}_0 \cdot \overline{\mathbf{A}}_1$	0	1	1	1
$\mathbf{A}_0 \cdot \overline{\mathbf{A}}_1$	0	0	1	1
$\mathbf{A}_0 \cdot \mathbf{A}_1$	0	0	0	0
$\overline{\mathbf{A}}_0 \cdot \mathbf{A}_1$	0	0	1	0

$$LT = B_1 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 + B_0 \cdot \overline{A}_0 \cdot \overline{A}_1$$

Comparator example (cont'd)

$$A=B$$
:

	$\overline{B}_0 \cdot \overline{B}_1$	$\mathbf{B}_0 \cdot \overline{\mathbf{B}}_1$	$\mathbf{B}_0 \cdot \mathbf{B}_1$	$\overline{B}_0 \cdot B_1$
$\overline{\mathtt{A}}_0 \cdot \overline{\mathtt{A}}_1$	1	0	0	0
$\mathbf{A}_0 \cdot \overline{\mathbf{A}}_1$	0	1	0	0
$\mathbf{A}_0 \cdot \mathbf{A}_1$	0	0	1	0
$\overline{\mathtt{A}}_0 \cdot \mathtt{A}_1$	0	0	0	1

$$EQ = \overline{B}_0 \cdot \overline{B}_1 \cdot \overline{A}_0 \cdot \overline{A}_1 + B_0 \cdot \overline{B}_1 \cdot A_0 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot A_0 \cdot \overline{A}_1 + B_0 \cdot B_1 \cdot \overline{A}_0 \cdot A_1$$

Comparator example (cont'd)

A>B:

	$\overline{B}_0 \cdot \overline{B}_1$	$\mathbf{B}_0 \cdot \overline{\mathbf{B}}_1$	$B_0 \cdot B_1$	$\overline{B}_0 \cdot B_1$
$\overline{\mathtt{A}}_0 \cdot \overline{\mathtt{A}}_1$	0	0	0	0
$\mathbf{A}_0 \cdot \overline{\mathbf{A}}_1$	1	0	0	0
$\mathbf{A}_0 \cdot \mathbf{A}_1$	1	1	0	1
$\overline{\mathtt{A}}_0 \cdot \mathtt{A}_1$	1	1	0	0

$$GT = \overline{B}_1 \cdot A_1 + \overline{B}_0 \cdot \overline{B}_1 \cdot A_1 + \overline{B}_0 \cdot A_0 \cdot A_1$$

Comparators in Verilog

 Implementing a comparator can be done by putting together the circuits as shown in the previous slide, or by using the comparison operators to make things a little easier:

```
module comparator_4_bit (a_gt_b, a_lt_b, a_eq_b, a, b);
input [3:0] a, b;
output a_gt_b, a_lt_b, a_eq_b;
assign a_gt_b = (a > b);
assign a_lt_b = (a < b);
assign a_eq_b = (a == b);
endmodule
```

Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
 - Easier, less circuitry, just not faster.

