
Week 3: 
Logical Devices



We are here

Assembly Language

Processors
Finite State 
Machines

Arithmetic 
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors



Building up from gates…

§ Some common and more complex structures:
ú Multiplexers (MUX)
ú Adders (half and full)
ú Subtractors
ú Comparators 
ú Decoders

  Seven-segment decoders

These are all 
combinational 
circuits



Combinational Circuits

§ Combinational Circuits are any circuits where 
the outputs rely strictly on the inputs. 
ú Everything we’ve done so far and what we’ll do today 

is all combinational logic.

§ Another category is sequential circuits that we 
will learn in the next few weeks.



Karnaugh map review

§ K-maps provide an illustration of a circuit’s 
minterms (or maxterms), and a guide to how 
neighbouring terms may be combined.

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

Y = A·B·C + A·B·C + A·B·C + A·B·C

= B·C + A·C



Karnaugh map example

§ Create a circuit with 
four inputs (A, B, C , 
D), and two outputs 
(X, Y): 
ú The output X is high 

whenever two or more 
of the inputs are high.

ú The output Y is high 
when three or more of 
the inputs are high.

A B C D X Y

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 1

1 1 0 0 1 0

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1



Karnaugh map example

C·D C·D C·D C·D

A·B 0 0 1 0

A·B 0 1 1 1

A·B 1 1 1 1

A·B 0 1 1 1

X:

X = A·B + C·D + B·D + B·C + A·D + A·C



Alternative for X: Maxterms

C·D C·D C·D C·D

A·B 0 0 1 0

A·B 0 1 1 1

A·B 1 1 1 1

A·B 0 1 1 1

X:



Alternative for X: Maxterms

C+D C+D C+D C+D

A+B 0 0 1 0

A+B 0 1 1 1

A+B 1 1 1 1

A+B 0 1 1 1

X:

X = (A+C+D)·(B+C+D)·(A+B+C)·(A+B+D)



Karnaugh map example

C·D C·D C·D C·D

A·B 0 0 0 0

A·B 0 0 1 0

A·B 0 1 1 1

A·B 0 0 1 0

Y:

Y = A·B·D + B·C·D + A·B·C + A·C·D



Karnaugh map review
§ Note: There are cases where no combinations 

are possible. K-maps cannot help these cases.
§ Example: Multi-input XOR gates.

B·C B·C B·C B·C

A 0 1 0 1

A 1 0 1 0

A

C
YB

Y = A·B·C + A·B·C + A·B·C + A·B·C



Multiplexers



Logic devices

§ Certain structures are common to many 
circuits, and have block elements of their own.
ú e.g., Multiplexers (short form: mux)
ú Behaviour: Output is X if S is 0, and Y if S is 1:

  S is the select input; X and  Y are the data inputs.

Y
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n specifies  the 
number of bits.

2-to-1 mux



Multiplexer uses

§ Muxes are very useful whenever you need to 
select from multiple input values.

§ Your TV has at least one!
You can select different
input sources.

§ More exampels: 
ú surveillance video monitors
ú digital cable boxes
ú routers.



Multiplexer design
X Y S M

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Multiplexer design

Y·S Y·S Y·S Y·S

X 0 0 1 0

X 1 0 1 1

M = Y·S + X·S

X Y S M

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

S

Y

X

M
S

Y

X

M



Decoders



Decoders
§ Decoders are essentially translators.

ú Translate from the output of one circuit to the 
input of another.

ú Think of them as providing a mapping between 
two different encodings!

§ Example: Binary signal splitter
ú Activates one of four

output lines, based on
a two-digit binary number.
(binary à “one-hot”) D

ec
od

erX1

X0

A
B
C
D



Demultiplexers

§ Related to decoders: demultiplexers.
ú Does multiplexer operation, in reverse.
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7-segment decoder

§ Common and useful decoder application.
ú Translate from a 4-digit binary number to the 

seven segments of a digital display.
ú Each output segment has a particular

logic that defines it.
ú Example: Segment 0

  Activate for values: 0, 2, 3, 5, 6, 7, 8, 9.
  In binary: 0000, 0010, 0011, 0101, 0110, 0111, 1000, 
1001.

ú First step: Build the truth table and K-map.

0

1

2

3

4

5
6



7-segment decoder

§ These segments are “active-low”, 
meaning that setting it low turns it on.

§ Example: Displaying digits 0-9
ú Assume input is a 4-digit binary number
ú Segment 0 (top segment) is low whenever the 

input values are 0000, 0010, 0011, 0101, 0110, 
0111, 1000 or 1001, and high whenever input 
number is 0001 or 0100.

ú This create a truth table and map like the 
following….

0

1

2

3

4

5
6



7-segment decoder

X3 X2 X1 X0 HEX0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

0

1

2

3

4

5
6

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 1 0 0

X3·X2 1 0 0 0

X3·X2 ? ? ? ?

X3·X2 0 0 ? ?

§ HEX0 = X3·X2·X1·X0
+ X3·X2·X1·X0

§ But what about input 
values from 1010 to  
1111?



“Don’t care” values
§ Input values that will never happen or are not 

meaningful in a given design, and so their output 
values do not have to be defined.
ú Recorded as ‘X’ in truth-tables and K-Maps.

§ In the K-maps we can think of these “don’t care”
values as either 0 or 1 depending on what helps 
us simplify our circuit.
ú Note you do NOT change the X with a 0 or 1, you just 

include it in a grouping as needed.



“Don’t care” values
§ New equation for HEX0:

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 1 0 0

X3·X2 1 0 0 0

X3·X2 X X X X

X3·X2 0 0 X X

HEX0 = X3·X2·X1·X0
+ X2·X1·X0



Again for segment 1

X3 X2 X1 X0 HEX1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

0

1

2

3

4

5
6

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 0 0 0

X3·X2 0 1 0 1

X3·X2 X X X X

X3·X2 0 0 X X

HEX1 = X2·X1·X0 + 
X2·X1·X0



Again for segment 2

X3 X2 X1 X0 HEX2

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

X1·X0 X1·X0 X1·X0 X1·X0

X3·X2 0 0 0 1

X3·X2 0 0 0 0

X3·X2 X X X X

X3·X2 0 0 X X

HEX2 = X2·X1·X0

0

1

2

3

4

5
6



The final 7-seg decoder

§ There are many kinds
of decoders.

§ They all look the 
same, except for the 
inputs and outputs.

§ Of course, unlike other
devices, the internals differs from decoder 
to decoder.

7-
se

g 
de

co
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rX3

X2

HEX6
HEX5
HEX4

HEX3
HEX2
HEX1

HEX0

X1

X0



Another “don’t care” example
§ Climate control fan:

ú The fan should turn on (F) if the temperature is 
hot (H) or if the temperature is cold (C), depending 
on whether the unit is set to A/C or heating (A).

H C A F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 X

1 1 1 X

H·C H·C H·C H·C

A 0 1 X 0

A 0 0 X 1

F = A·H + A·C



Adder circuits



Adders

§ Also known as binary adders.
ú Small circuit devices that add two digits together.
ú Combined together to create iterative 

combinational circuits.

§ Types of adders:
ú Half adders (HA)
ú Full adders (FA)
ú Ripple Carry Adder
ú Carry-Look-Ahead Adder (CLA)



Review of Binary Math

§ Each digit of a decimal number represents a 
power of 10:

§ Each digit of a binary number represents a 
power of 2:

258 = 2x102 + 5x101 + 8x100

011012 = 0x24 + 1x23 + 1x22 + 0x21 + 1x20

= 1310



Unsigned binary addition

§ 27 + 53
27 = 00011011
53 = 00110101

00011011

+00110101

01010000

01010000

1 1 1 1 1 1

8010



Unsigned binary addition

§ 27 + 53
27 = 00011011
53 = 00110101

00011011

+00110101

01010000

§ 95 + 181
01011111

+10110101

01011111

+10110101

100010100

01010000 00010100

carry bit

1 1 1 1 1 1 1 1 1 1 1 1 11

With 8 bits
we can only 
represent 
unsigned 
numbers 0 
to 255 !

8010 2010 ??



Half Adders
§ A 2-input, 1-bit width binary adder that performs 

the following computations:

§ A half adder adds two bits 
to produce a two-bit sum.

§ The sum is expressed as a 
sum bit  S and a carry bit C.

X 0 0 1 1
+Y +0 +1 +0 +1

CS 00 01 01 10

HA

X Y

C

S

This is 
a truth 
table!



Half Adder Implementation

§ Equations and circuits for half adder units are 
easy to define (even without Karnaugh maps)

C = X·Y S = X·Y + X·Y
= XÅY

HA

X Y

C

S

X

Y

S

C



Full Adders

§ Similar to half-adders, but
with another input Z, which
represents a carry-in bit.
ú C and Z are sometimes labeled as Cout and Cin.

§ When Z is 0, the unit behaves exactly like a 
half adder.

§ When Z is 1:

FA

X Y

C

S

Z

X 0 0 1   1
+Y +0 +1 +0  +1
+Z +1 +1 +1  +1

CS 01 10 10  11



Full Adder Design
X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

C Y·Z Y·Z Y·Z Y·Z

X 0 0 1 0

X 0 1 1 1

S = X Å Y Å ZC = X·Y + X·Z + Y·Z

S Y·Z Y·Z Y·Z Y·Z

X 0 1 0 1

X 1 0 1 0



Full Adder Design

§ The C term can also be 
rewritten as:

§ Two terms come from this:
ú X·Y = carry generate (G).

ú XÅY = carry propagate (P).

§ Results in this circuit à
Cout

Cin

YX

G

P

S

C = X·Y + (X Å Y)·Z



Ripple-Carry Binary Adder

§ Full adder units are chained together in order 
to perform operations on signal vectors.

Adder

X Y

Cout

S

Cin

4 4

4

Cin
FA

X0Y0

S0

FA

X1Y1

S1

C1
FA

X2Y2

S2

C2
FA

X3Y3

S3

C3Cout



Break



The role of Cin

§ Why can’t we just have a half-adder for the 
smallest (right-most) bit?

§ We could, if we were only interested in 
addition. But the last bit allows us to do 
subtraction as well!
ú Time for a little fun with subtraction!

Cin
FA

X0Y0

S0

FA

X1Y1

S1

C1
FA

X2Y2

S2

C2
FA

X3Y3

S3

C3Cout



Lets Have Fun

1. Find a partner.
2. Have each 

person choose
a five-digit
binary number.

3. Take the smaller
number, and invert all the digits.

4. Add this inverted number to the larger one.
5. Add one to the result.
6. Check what the result is…



Subtractors

§ Subtractors are an extension of adders.
ú Basically, perform addition on a negative number.

§ To do subtraction, we need to understand 
representation of negative binary numbers.

§ Unsigned numbers
ú Data bits store the positive version of the number.

§ Sign-and-magnitude
ú Another, separate bit exists for the sign (the sign bit).

§ Signed:
ú Store a 2’s complement negative number using all bits.
ú More common, and what we use for this course.



Two’s complement
§ Need to know how to get 1’s complement:

ú Given number Xwith n bits, take (2n-1)-X
ú Invert individual bits  (bitwise NOT).

§ 2’s complement = (1’s complement + 1)

§ Note: Adding a 2’s complement number to the 
original number produces a result of zero.

01001101   à 10110010
11111111   à 00000000

01001101   à 10110011
11111111   à 00000001

Know 
this!



Signed representations
Decimal Unsigned Signed 2’s

7 111 ---

6 110 ---

5 101 ---

4 100 ---

3 011 011

2 010 010

1 001 001

0 000 000

-1 --- 111

-2 --- 110

-3 --- 101

-4 --- 100



Practice 2’s complement! 

§ Assume 4-bits signed representation, write 
the following decimal numbers in binary:
ú 2
ú -1
ú 0
ú 8
ú -8

§ What is max positive number?
§ What is min negative number?

=>  0010

=>  1111

=>  0000

=> Not possible to represent in 4 digits! 

=>  1000

=> 7  (or 24-1 -1)

=> -8  (or -24-1)



Rules about signed numbers
§ When thinking of signed binary numbers, there are a few 

useful rules to remember:
ú The largest positive binary number is a zero followed by all ones.
ú The binary value for -1 has ones in all the digits.
ú The most negative binary number is a one followed by all zeroes.

§ There are 2n possible values that can be stored in an n-digit 
binary number.
ú 2n-1 are negative, 2n-1-1 are positive,

and  one is zero.

ú For example, given an 8-bit binary number:
  There are 256 possible values
  One of those values is zero
  128 are negative values (11111111 to 10000000)
  127 are positive values (00000001 to 01111111)

-1 to -128

1 to 127



Signed subtraction

§ Negative numbers are generally stored in 2’s 
complement notation.
ú Reminder: 1’s complement à bits are the bitwise 

NOT of the equivalent positive value.
ú 2’s complement à 1’s complement  value plus 

one; results in zero when added to equivalent 
positive value.

§ Subtraction can then be performed by using 
the binary adder circuit with negative 
numbers.



At the core of subtraction

§ Subtraction of a number is simply the 
addition of its negative value. 

§ This the negative value is found using  the 2’s 
complement process.

ú 7 – 3 = 7 + (-3)
ú -3 – 2 = -3 + (-2)



Signed Subtraction example

§ 7 – 3
0111

-0011

0111

+1101

10100

§ -3 – 2
1101

-0010

1101

+1110

11011

0100 = 410 1011 = -510

discarded discarded



What about bigger numbers

§ 53 – 27
00110101

-00011011

00110101

+11100101

100011010

§ 27 – 53
00011011

-00110101

00011011

+11001011

011100110

00011010 = 2610 11100110 = -2610

discarded discarded



Subtraction circuit
§ 4-bit subtractor: X –Y

ú X plus 2’s complement of  Y 
ú X plus 1’s complement of Y plus 1

Cin
FA

X0

S0

C1

Y0

FA

X1

S1

C2

Y1

FA

X2

S2

C3

Y2

FA

X3

S3

Cout

Y3

1

Feed 1 as Carry-In in 
the least significant FA.

Use NOT gates to 
get the 1’s 
complement of  Y.



Addition/Subtraction circuit

§ The full adder circuit can be expanded to 
incorporate the subtraction operation
ú Remember: 2’s complement = 1’s complement + 1
ú We connect Sub to Cin

Cin
FA

X0

Y0

S0

FA

X1

Y1

S1

C1
FA

X2

Y2

S2

C2
FA

X3

Y3

S3

C3Cout

Sub

If Sub is 0 => addition.
If Sub is 1 => subtraction.



Food for Thought

§ What happens if we add these two positive signed 
binary numbers 0110 + 0011 (i.e., 6 + 3) ?
ú The result is 1001. 
ú But that is a negative number (-7)!  L

§ What happens if we add the two negative numbers 
1000 + 1111 (i.e., -8 + (-1))?
ú The result is  0111with a carry-out. L

§ We need to know when the result might be wrong.
ú This is usually indicated in hardware by the Overflow flag! 
ú More about this when we’ll talk about processors.



Subtracting unsigned numbers

§ General algorithm for  X -Y:
1. Get the 2’s complement of the subtrahend Y (the 

term being subtracted).
2. Add that value to the minuend X (the term being 

subtracted from).
3. If there is an end carry (Cout is high), the final 

result is positive and does not change.
4. If there is no end carry (Cout is low), get the 2’s 

complement of the result and add a negative 
sign to it (or set the sign bit high).



Unsigned subtraction example

§ 53 – 27
00110101

-00011011

§ 27 – 53
00011011

-00110101



Unsigned subtraction example

§ 53 – 27
00110101

-00011011

00110101

+11100101

100011010

§ 27 – 53
00011011

-00110101

00011011

+11001011

011100110

00011010 -00011010

carry bit no carry bit

sign bit 
is low

sign bit 
is high



Comparators



Comparators

§ A circuit that takes in 
two input vectors, and 
determines if the first 
is greater than, less 
than or equal to the 
second.

§ How does one make 
that in a circuit?



Basic Comparators

§ Consider two binary numbers 
A and B, where A and B are one bit long.

§ The circuits for this would be:
ú A==B:

ú A>B:

ú A<B:

A·B + A·B

A·B

A·B

A B

Comparator
A=B
A>B
A<B

A B
0 0

0 1

1 0

1 1



Basic Comparators

§ What if A and B are two bits long?
§ The terms for this circuit for have to

expand to reflect the second signal.
§ For example:

ú A==B:

A1 B1

Comparator

A0 B0

A=B
A>B

A<B

(A1·B1+A1·B1)·(A0·B0+A0·B0)

Make sure that the values 
of bit 1 are the same

Make sure that the  values 
of bit 0 are the same



Basic Comparators

§ What about checking if A is greater
or less than B?

ú A>B:

ú A<B:

A1 B1

Comparator

A0 B0

A=B
A>B

A<B

A1·B1 + (A1·B1+A1·B1)·(A0·B0)

A1·B1 + (A1·B1+A1·B1)·(A0·B0)

Check if first bit 
satisfies condition

…and then do the 
1-bit comparison

If not, check that the 
first bits are equal…



Basic Comparators

§ The final circuit equations for two-
input comparators are shown below.
ú Note the sections they have in common!

ú A==B:

ú A>B:

ú A<B:

A1 B1

Comparator

A0 B0

A=B
A>B

A<B

(A1·B1+A1·B1)·(A0·B0+A0·B0)

A1·B1 + (A1·B1+A1·B1)·(A0·B0)

A1·B1 + (A1·B1+A1·B1)·(A0·B0)



General Comparators

§ The general circuit for comparators requires 
you to define equations for each case.

§ Case #1: Equality
ú If inputs A and B are equal, then all bits must be 

the same.
ú Define Xi for any digit i:

­ (equality for digit i)

ú Equality between A and B is defined as:

A==B : X0·X1·…·Xn

Xi = Ai·Bi + Ai·Bi



Comparators
§ Case #2: A > B

ú The first non-matching bits occur at bit i, where 
Ai=1 and Bi=0. All higher bits match.

ú Using the definition for Xi from before:

§ Case #3: A < B
ú The first non-matching bits occur at bit i, where 
Ai=0 and Bi=1. Again, all higher bits match.

A>B = An·Bn + Xn·An-1·Bn-1 + … + A0·B0·Π Xkk=1

n

A<B = An·Bn + Xn·An-1·Bn-1 + … + A0·B0·Π Xkk=1

n



Example for 4 bits

A=B

A > B

A< B

A=B = X3·X2·X1·X0

A3·B3 + X3·A2·B2 + X3·X2·A1·B1 + X3·X2·X1·A0·B0

A3·B3 + X3·A2·B2 + X3·X2·A1·B1 + X3·X2·X1·A0·B0



Comparator truth table
Inputs Outputs

A1 A0 B1 B0 A < B A = B A > B

0 0 0 0 0 1 0

0 0 0 1 1 0 0

0 0 1 0 1 0 0

0 0 1 1 1 0 0

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 0 1 0

1 0 1 1 1 0 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 0 1 0

§ Given two input 
vectors of size 
n=2, output of 
circuit is shown 
at right.



Comparator example (cont’d)

B0·B1 B0·B1 B0·B1 B0·B1

A0·A1 0 1 1 1

A0·A1 0 0 1 1

A0·A1 0 0 0 0

A0·A1 0 0 1 0

A<B:

LT = B1·A1 + B0·B1·A0  + B0·A0·A1



Comparator example (cont’d)

B0·B1 B0·B1 B0·B1 B0·B1

A0·A1 1 0 0 0

A0·A1 0 1 0 0

A0·A1 0 0 1 0

A0·A1 0 0 0 1

A=B:

EQ = B0·B1·A0·A1 + B0·B1·A0·A1 + 
B0·B1·A0·A1 + B0·B1·A0·A1



Comparator example (cont’d)

B0·B1 B0·B1 B0·B1 B0·B1

A0·A1 0 0 0 0

A0·A1 1 0 0 0

A0·A1 1 1 0 1

A0·A1 1 1 0 0

A>B:

GT = B1·A1 + B0·B1·A1  + B0·A0·A1



Comparators in Verilog

§ Implementing a comparator can be done by 
putting together the circuits as shown in the 
previous slide, or by using the comparison 
operators to make things a little easier:

module comparator_4_bit (a_gt_b, a_lt_b, a_eq_b, a, b);

input [3:0] a, b;
output a_gt_b, a_lt_b, a_eq_b;

assign a_gt_b = (a > b);
assign a_lt_b = (a < b);
assign a_eq_b = (a == b);

endmodule



Comparing larger numbers

§ As numbers get larger, the comparator circuit 
gets more complex. 

§ At a certain level, 
it can be easier 
sometimes to just 
process the result
of a subtraction
operation instead.
ú Easier, less circuitry,

just not faster.


