Week 3: Logical Devices

We are here

Building up from gates...

- Some common and more complex structures:
- Multiplexers (MUX)
- Adders (half and full)
- Subtractors
- Comparators
- Decoders
- Seven-segment decoders

Combinational Circuits

- Combinational Circuits are any circuits where the outputs rely strictly on the inputs.
- Everything we've done so far and what we'll do today is all combinational logic.
- Another category is sequential circuits that we will learn in the next few weeks.

Karnaugh map review

	$\overline{\mathbf{B}} \cdot \overline{\mathbf{C}}$	$\overline{\mathbf{B}} \cdot \mathbf{C}$	$\mathbf{B} \cdot \mathbf{C}$	$\mathbf{B} \cdot \overline{\mathbf{C}}$
$\overline{\mathbf{A}}$	0	0	1	0
\mathbf{A}	1	0	1	1

- K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$
\begin{aligned}
Y & =\overline{\bar{A} \cdot B \cdot C}+\overline{A \cdot \bar{B} \cdot \bar{C}+A \cdot B \cdot \bar{C}}+\overline{A \cdot B \cdot C} \\
& =B \cdot C+A \cdot \bar{C}
\end{aligned}
$$

Karnaugh map example

- Create a circuit with four inputs (A, B, C , $\mathrm{D})$, and two outputs (X, Y):
- The output X is high whenever two or more of the inputs are high.
- The output Y is high when three or more of the inputs are high.

A	B	C	D	X	Y
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Karnaugh map example

$\mathbf{X}:$		$\overline{\mathbf{C}} \cdot \overline{\mathbf{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$
\mathbf{l}	$\mathbf{C} \cdot \overline{\mathbf{D}}$			
$\mathbf{A} \cdot \overline{\mathbf{B}}$	0	0	1	0
$\overline{\mathbf{A}} \cdot \mathbf{B}$	0	1	1	1
$\mathbf{A} \cdot \mathbf{B}$	1	1		1
$\mathbf{A} \cdot \overline{\mathbf{B}}$	0	1	1	1

$$
X=A \cdot B+C \cdot D+B \cdot D+B \cdot C+A \cdot D+A \cdot C
$$

Alternative for X: Maxterms

X:

	$\overline{\mathbf{C}} \cdot \overline{\mathbf{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$	$\mathbf{C} \cdot \overline{\mathbf{D}}$
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	0	0	1	0
$\overline{\mathbf{A}} \cdot \mathbf{B}$	0	1	1	1
$\mathbf{A} \cdot \mathbf{B}$	1	1	1	1
$\mathbf{A} \cdot \overline{\mathbf{B}}$	0	1	1	1

Alternative for X: Maxterms

X:

	$\mathrm{C}+\mathrm{D}$	$\mathrm{C}+\overline{\mathrm{D}}$	$\overline{\mathrm{C}}+\overline{\mathrm{D}}$	$\overline{\mathrm{C}}+\mathrm{D}$
$\mathbf{A}+\mathbf{B}$	0	0	1	0
$\mathbf{A}+\overline{\mathrm{B}}$	0	1	1	1
$\overline{\mathbf{A}}+\overline{\mathrm{B}}$	1	1	1	1
$\overline{\mathbf{A}}+\mathbf{B}$	0	1	1	1

$$
X=(A+C+D) \cdot(B+C+D) \cdot(A+B+C) \cdot(A+B+D)
$$

Karnaugh map example

$Y:$		$\bar{C} \cdot \overline{\mathbf{D}}$	$\overline{\mathbf{C}} \cdot \mathbf{D}$	$\mathbf{C} \cdot \mathbf{D}$	$\mathbf{C} \cdot \overline{\mathbf{D}}$
$\mathbf{\overline { \mathbf { A } } \cdot \overline { \mathbf { B } }}$	0	0	0	0	
$\overline{\mathbf{A}} \cdot \mathbf{B}$	0	0	1	0	
$\mathbf{A} \cdot \mathbf{B}$	0	1	1	1	
$\mathbf{A} \cdot \overline{\mathbf{B}}$	0	0	1	0	

$$
Y=A \cdot B \cdot D+B \cdot C \cdot D+A \cdot B \cdot C+A \cdot C \cdot D
$$

Karnaugh map review

- Note: There are cases where no combinations are possible. K-maps cannot help these cases.
- Example: Multi-input XOR gates.

$$
Y=\bar{A} \cdot \bar{B} \cdot C+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+A \cdot B \cdot C
$$

Multiplexers

Logic devices

- Certain structures are common to many circuits, and have block elements of their own.
- e.g., Multiplexers (short form: mux)
- Behaviour: Output is X if S is 0 , and Y if S is 1 :
- S is the select input; X and Y are the data inputs.

Multiplexer uses

- Muxes are very useful whenever you need to select from multiple input values.
- YourTV has at least one! You can select different input sources.
- More exampels:
- surveillance video monitors
- digital cable boxes
routers.

Multiplexer design

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{M}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiplexer design

\mathbf{X}	\mathbf{Y}	\mathbf{S}	\mathbf{M}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

	$\overline{\mathbf{Y}} \cdot \overline{\mathbf{S}}$	$\overline{\mathbf{Y}} \cdot \mathbf{S}$	$\mathbf{Y} \cdot \mathbf{S}$	$\mathbf{Y} \cdot \overline{\mathbf{S}}$
$\overline{\mathbf{X}}$	0	0	1	0
\mathbf{X}	1	0	1	1

$$
M=Y \cdot S+X \cdot \bar{S}
$$

Decoders

Decoders

- Decoders are essentially translators.
- Translate from the output of one circuit to the input of another.
- Think of them as providing a mapping between two different encodings!
- Example: Binary signal splitter
- Activates one of four output lines, based on a two-digit binary number. (binary \rightarrow "one-hot")

Demultiplexers

- Related to decoders: demultiplexers.
- Does multiplexer operation, in reverse.

7-segment decoder

- Common and useful decoder application.
- Translate from a 4-digit binary number to the seven segments of a digital display.
- Each output segment has a particular logic that defines it.
- Example: Segment 0
" Activate for values: $0,2,3,5,6,7,8,9$.

" In binary: 0000,0010,0011,0101,0110,0111,1000, 1001 .
First step: Build the truth table and K-map.

7-segment decoder

- These segments are "active-low", meaning that setting it low turns it on.
- Example: Displaying digits 0-9
- Assume input is a 4-digit binary number
- Segment 0 (top segment) is low whenever the input values are $0000,0010,0011,0101,0110$, 0111,1000 or 1001 , and high whenever input number is 0001 or 0100 .

This create a truth table and map like the following....

7-segment decoder

\mathbf{X}_{3}	\mathbf{X}_{2}	\mathbf{x}_{1}	\mathbf{x}_{0}	HEX $_{\mathbf{0}}$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathrm{X}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathrm{X}_{0}$	$\mathrm{X}_{1} \cdot \mathrm{X}_{0}$	$\mathrm{X}_{1} \cdot \overline{\mathrm{X}}_{0}$
$\overline{\mathbf{X}}_{3} \cdot \overline{\mathrm{X}}_{2}$	0	1	0	0
$\overline{\mathrm{X}}_{3} \cdot \mathrm{X}_{2}$	1	0	0	0
$\mathrm{X}_{3} \cdot \mathrm{X}_{2}$?	?	?	?
$\mathrm{X}_{3} \cdot \overline{\mathrm{X}}_{2}$	0	0	?	?

- $\mathrm{HEXO}=\overline{\mathrm{X}}_{3} \cdot \overline{\mathrm{X}}_{2} \cdot \overline{\mathrm{X}}_{1} \cdot \mathrm{X}_{0}$
$+\overline{\mathrm{X}}_{3} \cdot \mathrm{X}_{2} \cdot \overline{\mathrm{X}}_{1} \cdot \overline{\mathrm{X}}_{0}$
- But what about input values from 1010 to

"Don’t care" values

- Input values that will never happen or are not meaningful in a given design, and so their output values do not have to be defined.
- Recorded as 'X' in truth-tables and K-Maps.
- In the K-maps we can think of these "don't care" values as either 0 or 1 depending on what helps us simplify our circuit.
- Note you do NOT change the X with a 0 or 1, you just include it in a grouping as needed.

"Don’t care" values

- New equation for HEX0:

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$
$\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$	0	1	0	0
$\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$	1	0	0	0
$\mathbf{x}_{3} \cdot \mathbf{x}_{2}$	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{x}_{3} \cdot \overline{\mathbf{x}}_{2}$	0	0	\mathbf{x}	\mathbf{x}

$$
\begin{aligned}
\mathrm{HEXO} & =\overline{\mathrm{X}}_{3} \cdot \overline{\mathrm{X}}_{2} \cdot \overline{\mathrm{X}}_{1} \cdot \mathrm{X}_{0} \\
+ & \mathrm{X}_{2} \cdot \overline{\mathrm{X}}_{1} \cdot \overline{\mathrm{X}}_{0}
\end{aligned}
$$

Again for segment 1

\mathbf{x}_{3}	\mathbf{x}_{2}	\mathbf{x}_{1}	\mathbf{x}_{0}	HEX $_{1}$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathrm{x}_{1} \cdot \mathbf{x}_{0}$	$\mathrm{x}_{1} \cdot \overline{\mathbf{x}}_{0}$
$\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$	0	0	0	0
$\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$	0	1	0	1
$\mathbf{x}_{3} \cdot \mathbf{x}_{2}$	x	x	\mathbf{x}	x
$\mathbf{x}_{3} \cdot \overline{\mathbf{x}}_{2}$	0	0	\mathbf{x}	\mathbf{x}

$$
\begin{gathered}
\operatorname{HEX} 1=\mathrm{x}_{2} \cdot \overline{\mathrm{x}}_{1} \cdot \mathrm{x}_{0}+ \\
\mathrm{X}_{2} \cdot \mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{0}
\end{gathered}
$$

Again for segment 2

$\mathbf{x}_{\mathbf{3}}$	\mathbf{X}_{2}	\mathbf{x}_{1}	\mathbf{x}_{0}	HEX $_{\mathbf{2}}$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

	$\overline{\mathbf{x}}_{1} \cdot \overline{\mathbf{x}}_{0}$	$\overline{\mathbf{x}}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x}_{1} \cdot \mathbf{x}_{0}$	$\mathbf{x}_{1} \cdot \overline{\mathbf{x}}_{0}$
$\overline{\mathbf{x}}_{3} \cdot \overline{\mathbf{x}}_{2}$	0	0	0	1
$\overline{\mathbf{x}}_{3} \cdot \mathbf{x}_{2}$	0	0	0	0
$\mathbf{x}_{3} \cdot \mathbf{x}_{2}$	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{x}_{3} \cdot \overline{\mathbf{x}}_{2}$	0	0	\mathbf{x}	\mathbf{x}

$\operatorname{HEX} 2=\overline{\mathrm{X}}_{2} \cdot \mathrm{X}_{1} \cdot \overline{\mathrm{X}}_{0}$

The final 7-seg decoder

- There are many kinds of decoders.
- They all look the same, except for the inputs and outputs.

- Of course, unlike other devices, the internals differs from decoder to decoder.

Another "don't care" example

- Climate control fan:
- The fan should turn on (F) if the temperature is hot (H) or if the temperature is cold (C), depending on whether the unit is set to A / C or heating (A).

\mathbf{H}	\mathbf{C}	\mathbf{A}	\mathbf{F}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

	$\overline{\mathbf{H}} \cdot \overline{\mathbf{C}}$	$\overline{\mathrm{H}} \cdot \mathrm{C}$	$\mathrm{H} \cdot \mathrm{C}$	$\mathrm{H} \cdot \overline{\mathbf{C}}$
$\overline{\mathbf{A}}$	0	1	X	0
\mathbf{A}	0	0	X	1

$$
\mathrm{F}=\mathrm{A} \cdot \mathrm{H}+\overline{\mathrm{A}} \cdot \mathrm{C}
$$

Adder circuits

Adders

- Also known as binary adders.
- Small circuit devices that add two digits together.
- Combined together to create iterative combinational circuits.
- Types of adders:
- Half adders (HA)
- Full adders (FA)
- Ripple Carry Adder
- Carry-Look-Ahead Adder (CLA)

Review of Binary Math

- Each digit of a decimal number represents a power of 10:

$$
258=2 \times 10^{2}+5 \times 10^{1}+8 \times 10^{0}
$$

- Each digit of a binary number represents a power of 2 :

$$
\begin{aligned}
01101_{2} & =0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =13_{10}
\end{aligned}
$$

Unsigned binary addition

- $27+53$
$27=00011011$
$53=00110101$
τ
111111
00011011
$\begin{array}{r}+00110101 \\ \hline 01010000\end{array}$
80_{10}
01010000

Unsigned binary addition

- 27 + 53
$27=00011011$
$53=00110101$ 2
$11 \perp 11$
00011011
+00110101
01010000
80_{10}
- 95 +181

01011111
+10110101

111111111
01011111
carry bit
20_{10} ??

With 8 bits we can only represent unsigned numbers o to 255 !

Half Adders

- A 2-input, 1-bit width binary adder that performs the following computations:

This is
a truth
table!

- A half adder adds two bits to produce a two-bit sum.
- The sum is expressed as a sum bit S and a carry bit C .

Half Adder Implementation

- Equations and circuits for half adder units are easy to define (even without Karnaugh maps)

$$
\begin{aligned}
C=X \cdot Y \quad S & =X \cdot \bar{Y}+\bar{X} \cdot Y \\
& =X \oplus Y
\end{aligned}
$$

Full Adders

- Similar to half-adders, but with another input Z, which represents a carry-in bit.
- C and Z are sometimes labeled as $\mathrm{C}_{\text {out }}$ and $\mathrm{C}_{\text {in }}$.
- When Z is 0 , the unit behaves exactly like a half adder.
- When Z is 1 :

$$
\begin{array}{rrrrr}
\mathrm{X} & 0 & 0 & 1 & 1 \\
+\mathrm{Y} & +0 & +1 & +0 & +1 \\
+\mathrm{Z} & \frac{+1}{\mathrm{CS}} & +1 & +1 & +1 \\
\hline \mathrm{CS} & \frac{+1}{10} &
\end{array}
$$

Full Adder Design

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{C}	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

\mathbf{C}	$\overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}}$	$\overline{\mathbf{Y}} \cdot \mathbf{Z}$	$\mathbf{Y} \cdot \mathbf{Z}$	$\mathbf{Y} \cdot \overline{\mathbf{Z}}$
$\overline{\mathbf{X}}$	0	0	1	0
\mathbf{X}	0	1	1	1

\mathbf{S}	$\overline{\mathbf{Y}} \cdot \overline{\mathbf{Z}}$	$\overline{\mathbf{Y}} \cdot \mathbf{Z}$	$\mathbf{Y} \cdot \mathbf{Z}$	$\mathbf{Y} \cdot \overline{\mathbf{Z}}$
$\overline{\mathbf{X}}$	0	1	0	1
\mathbf{X}	1	0	1	0

$$
C=X \cdot Y+X \cdot Z+Y \cdot Z
$$

$$
S=X \oplus Y \oplus Z
$$

Full Adder Design

- The C term can also be rewritten as:

$$
C=X \cdot Y+(X \oplus Y) \cdot Z
$$

- Two terms come from this:
- X • Y = carry generate (G).
- $\mathrm{X} \oplus \mathrm{Y}=$ carry propagate (P).
- Results in this circuit \rightarrow

Ripple-Carry Binary Adder

- Full adder units are chained together in order to perform operations on signal vectors.

Break

The role of C_{in}

- Why can't we just have a half-adder for the smallest (right-most) bit?
- We could, if we were only interested in addition. But the last bit allows us to do subtraction as well!
- Time for a little fun with subtraction!

Lets Have Fun

1. Find a partner.
2. Have each person choose a five-digit binary number.
3. Take the smaller number, and invert all the digits.
4. Add this inverted number to the larger one.
5. Add one to the result.
6. Check what the result is...

Subtractors

- Subtractors are an extension of adders.
- Basically, perform addition on a negative number.
- To do subtraction, we need to understand representation of negative binary numbers.
- Unsigned numbers
- Data bits store the positive version of the number.
- Sign-and-magnitude
- Another, separate bit exists for the sign (the sign bit).
- Signed:

Store a 2's complement negative number using all bits.
More common, and what we use for this course.

Two's complement

- Need to know how to get 1's complement:
- Given number X with n bits, take $\left(2^{\mathrm{n}}-1\right)-\mathrm{X}$
- Invert individual bits (bitwise NOT).

$$
\begin{array}{lll}
01001101 & \rightarrow & 10110010 \\
11111111 & \rightarrow & 00000000
\end{array}
$$

- 2's complement = (1's complement + 1)

$$
\begin{array}{lll}
01001101 & \rightarrow & 10110011 \\
11111111 & \rightarrow & 00000001
\end{array}
$$

Know this!

- Note: Adding a 2's complement number to the original number produces a result of zero.

Signed representations

Decimal	Unsigned	Signed $\mathbf{2}^{\prime} \mathbf{s}$
7	111	---
6	110	---
5	101	---
4	100	---
3	011	011
2	010	010
1	001	001
0	000	000
-1	---	111
-2	---	110
-3	---	101
-4	---	100

Practice 2's complement!

- Assume 4-bits signed representation, write the following decimal numbers in binary:
$\begin{array}{ll}\square 2 & \Rightarrow 0010 \\ -1 & \Rightarrow 1111 \\ 0 & \Rightarrow 0000 \\ \square & \Rightarrow \text { Not possible to represent in } 4 \text { digits! } \\ \square-8 & \Rightarrow 1000\end{array}$
- What is max positive number? $\Rightarrow 7$ (or $2^{4-1}-1$)
- What is min negative number? $=>-8$ (or -2^{4-1})

Rules about signed numbers

- When thinking of signed binary numbers, there are a few useful rules to remember:
- The largest positive binary number is a zero followed by all ones.
- The binary value for -1 has ones in all the digits.
- The most negative binary number is a one followed by all zeroes.
- There are 2^{n} possible values that can be stored in an n-digit binary number.
- $\quad 2^{n-1}$ are negative, $2^{n-1}-1$ are positive, and one is zero.
- For example, given an 8-bit binary number:
" There are 256 possible values
- One of those values is zero

128 are negative values (11111111 to 10000000)
127 are positive values (00000001 to 01111111)

Signed subtraction

- Negative numbers are generally stored in 2's complement notation.
- Reminder: 1's complement \rightarrow bits are the bitwise NOT of the equivalent positive value.
- 2's complement \rightarrow 1's complement value plus one; results in zero when added to equivalent positive value.
- Subtraction can then be performed by using the binary adder circuit with negative numbers.

At the core of subtraction

- Subtraction of a number is simply the addition of its negative value.
- This the negative value is found using the 2's complement process.

$$
\begin{aligned}
& 7-3=7+(-3) \\
& -3-2=-3+(-2)
\end{aligned}
$$

Signed Subtraction example

- 7-3

$$
0111
$$

discarded +1101
$\bigcirc \longdiv { 1 0 1 0 0 }$
$0100=4_{10}$

- -3-2

$1011=-5_{10}$

What about bigger numbers

- 53-27

00110101
-00011011
τ
00110101

- 27-53

00011011
-00110101

discarded +11100101
100011010
$00011010=26_{10}$
discarded +11001011
011100110

$$
11100110=-26_{10}
$$

Subtraction circuit

- 4-bit subtractor: $X-Y$
- X plus 2's complement of Y
- X plus 1's complement of Y plus 1

Addition/Subtraction circuit

- The full adder circuit can be expanded to incorporate the subtraction operation

Remember: 2's complement = 1's complement + 1 We connect Sub to Cin

Food for Thought

- What happens if we add these two positive signed binary numbers $0110+0011$ (i.e., $6+3$)?
- The result is 1001.
- But that is a negative number (-7) ! $: 8$
- What happens if we add the two negative numbers $1000+1111$ (i.e., $-8+(-1)$)?
- The result is 0111 with a carry-out. ()
- We need to know when the result might be wrong.

This is usually indicated in hardware by the Overflow flag! More about this when we'll talk about processors.

Subtracting unsigned numbers

- General algorithm for X-Y:

1. Get the 2's complement of the subtrahend Y (the term being subtracted).
2. Add that value to the minuend X (the term being subtracted from).
3. If there is an end carry ($\mathrm{C}_{\text {out }}$ is high), the final result is positive and does not change.
4. If there is no end carry ($\mathrm{C}_{\text {out }}$ is low), get the 2's complement of the result and add a negative sign to it (or set the sign bit high).

Unsigned subtraction example

- 53-27

00110101
-00011011
-00110101

Unsigned subtraction example

- 53-27

00110101
-00011011
τ
00110101

- 27-53

00011011
-00110101

no carry bit +11001011

Comparators

Comparators

- A circuit that takes in two input vectors, and determines if the first is greater than, less than or equal to the second.
- How does one make that in a circuit?

Basic Comparators

- Consider two binary numbers

A and B, where A and B are one bit long.
- The circuits for this would be:
- $A=B$:

$$
\mathrm{A} \cdot \mathrm{~B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
$$

A	B
0	0
0	1
1	0
1	1

- $A>B$:

$$
\mathrm{A} \cdot \overline{\mathrm{~B}}
$$

Basic Comparators

- What if A and B are two bits long?
- The terms for this circuit for have to expand to reflect the second signal.

- For example:
-
- $A=B$:

$$
\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\left(\mathrm{A}_{0} \cdot \mathrm{~B}_{0}+\overline{\mathrm{A}}_{0} \cdot \overline{\mathrm{~B}}_{0}\right)\right.
$$

Make sure that the values of bit 1 are the same

Basic Comparators

- What about checking if A is greater or less than B?

- $A>B$:

$$
\mathrm{A}_{1} \cdot \overline{\mathrm{~B}}_{1}+\left(\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\mathrm{A}_{0} \cdot \overline{\mathrm{~B}}_{0}\right)\right.
$$

Check if first bit satisfies condition If not, check that the first bits are equal...

- $A<B$:

$$
\left.\overline{\mathrm{A}}_{1} \cdot \mathrm{~B}_{1}\right)+\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\left(\overline{\mathrm{A}}_{0} \cdot \mathrm{~B}_{0}\right)\right.
$$

Basic Comparators

- The final circuit equations for twoinput comparators are shown below.
- Note the sections they have in common!
- $A==B$:

$$
\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right) \cdot\left(\mathrm{A}_{0} \cdot \mathrm{~B}_{0}+\overline{\mathrm{A}}_{0} \cdot \overline{\mathrm{~B}}_{0}\right)
$$

- $A>B$:

$$
\mathrm{A}_{1} \cdot \overline{\mathrm{~B}}_{1}+
$$

$$
\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right)
$$

$$
\cdot\left(\mathrm{A}_{0} \cdot \overline{\mathrm{~B}}_{0}\right)
$$

$A<B$:

$$
\overline{\mathrm{A}}_{1} \cdot \mathrm{~B}_{1}+\left(\left(\mathrm{A}_{1} \cdot \mathrm{~B}_{1}+\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~B}}_{1}\right)\right) \cdot\left(\overline{\mathrm{A}}_{0} \cdot \mathrm{~B}_{0}\right)
$$

General Comparators

- The general circuit for comparators requires you to define equations for each case.
- Case \#1: Equality
- If inputs A and B are equal, then all bits must be the same.
- Define X_{i} for any digit i:

$$
\mathrm{X}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}+\overline{\mathrm{A}}_{\mathrm{i}} \cdot \overline{\mathrm{~B}}_{\mathrm{i}}
$$

- (equality for digit i)
- Equality between A and B is defined as:

$$
A==B \quad: \quad X_{0} \cdot X_{1} \cdot \ldots \cdot X_{n}
$$

Comparators

- Case \#2: A > B
- The first non-matching bits occur at bit i, where $A_{i}=1$ and $B_{i}=0$. All higher bits match.
- Using the definition for X_{i} from before:

$$
A>B=A_{n} \cdot \bar{B}_{n}+X_{n} \cdot A_{n-1} \cdot \bar{B}_{n-1}+\ldots+A_{0} \cdot \bar{B}_{0} \cdot \prod_{k=1}^{n} X_{k}
$$

- Case \#3: A $<$ B
- The first non-matching bits occur at bit i, where $A_{i}=0$ and $B_{i}=1$. Again, all higher bits match.

$$
A<B=\bar{A}_{n} \cdot B_{n}+X_{n} \cdot \bar{A}_{n-1} \cdot B_{n-1}+\ldots+\bar{A}_{0} \cdot B_{0} \cdot \prod_{k=1}^{n} X_{k}
$$

Example for 4 bits
$A=B$

$$
\mathrm{A}=\mathrm{B}=X_{3} \cdot X_{2} \cdot X_{1} \cdot X_{0}
$$

A > B

$$
\mathrm{A}_{3} \cdot \overline{\mathrm{~B}}_{3}+\mathrm{X}_{3} \cdot \mathrm{~A}_{2} \cdot \overline{\mathrm{~B}}_{2}+\mathrm{X}_{3} \cdot \mathrm{X}_{2} \cdot \mathrm{~A}_{1} \cdot \overline{\mathrm{~B}}_{1}+\mathrm{X}_{3} \cdot \mathrm{X}_{2} \cdot \mathrm{X}_{1} \cdot \mathrm{~A}_{0} \cdot \overline{\mathrm{~B}}_{0}
$$

A<B

$$
\overline{\mathrm{A}}_{3} \cdot \mathrm{~B}_{3}+\mathrm{X}_{3} \cdot \overline{\mathrm{~A}}_{2} \cdot \mathrm{~B}_{2}+\mathrm{X}_{3} \cdot \mathrm{X}_{2} \cdot \overline{\mathrm{~A}}_{1} \cdot \mathrm{~B}_{1}+\mathrm{X}_{3} \cdot \mathrm{X}_{2} \cdot \mathrm{X}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \mathrm{~B}_{0}
$$

Comparator truth table

- Given two input vectors of size $\mathrm{n}=2$, output of circuit is shown at right.

Inputs								
\boldsymbol{A}_{1}	$\boldsymbol{A}_{\boldsymbol{0}}$	\boldsymbol{B}_{1}	$\boldsymbol{B}_{\mathbf{0}}$	$\boldsymbol{A}<\boldsymbol{B}$	$\boldsymbol{A}=\boldsymbol{B}$	$\boldsymbol{A}>\boldsymbol{B}$		
0	0	0	0	0	1	0		
0	0	0	1	1	0	0		
0	0	1	0	1	0	0		
0	0	1	1	1	0	0		
0	1	0	0	0	0	1		
0	1	0	1	0	1	0		
0	1	1	0	1	0	0		
0	1	1	1	1	0	0		
1	0	0	0	0	0	1		
1	0	0	1	0	0	1		
1	0	1	0	0	1	0		
1	0	1	1	1	0	0		
1	1	0	0	0	0	1		
1	1	0	1	0	0	1		
1	1	1	0	0	0	1		
1	1	1	1	0	1	0		

Comparator example (contd)

$A<B$:

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \mathbf{B}_{1}$	$\overline{\mathbf{B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	0	1	1	1
$\mathbf{A}_{0} \cdot \overline{\mathbf{A}}_{1}$	0	0	1	1
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	0	0	0	0
$\overline{\mathbf{A}}_{0} \cdot \mathbf{A}_{1}$	0	0	1	0

$$
\mathrm{LT}=\mathrm{B}_{1} \cdot \overline{\mathrm{~A}}_{1}+\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~A}}_{0}+\mathrm{B}_{0} \cdot \overline{\mathrm{~A}}_{0} \cdot \overline{\mathrm{~A}}_{1}
$$

Comparator example (contd)

$$
A=B:
$$

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathrm{~B}}_{1}$	$\mathrm{~B}_{0} \cdot \overline{\mathrm{~B}}_{1}$	$\mathrm{~B}_{0} \cdot \mathrm{~B}_{1}$	$\overline{\mathrm{~B}}_{0} \cdot \mathrm{~B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	1	0	0	0
$\mathbf{A}_{0} \cdot \overline{\mathbf{A}}_{1}$	0	1	0	0
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	0	0	1	0
$\overline{\mathbf{A}}_{0} \cdot \mathbf{A}_{1}$	0	0	0	1

$$
\begin{aligned}
\mathrm{EQ}= & \overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \overline{\mathrm{~A}}_{1}+\mathrm{B}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \mathrm{~A}_{0} \cdot \overline{\mathrm{~A}}_{1}+ \\
& \mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \mathrm{~A}_{0} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \mathrm{~B}_{1} \cdot \overline{\mathrm{~A}}_{0} \cdot \mathrm{~A}_{1}
\end{aligned}
$$

Comparator example (cont’d)

$A>B$:

	$\overline{\mathbf{B}}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \overline{\mathbf{B}}_{1}$	$\mathbf{B}_{0} \cdot \mathbf{B}_{1}$	$\overline{\mathrm{~B}}_{0} \cdot \mathbf{B}_{1}$
$\overline{\mathbf{A}}_{0} \cdot \overline{\mathbf{A}}_{1}$	0	0	0	0
$\mathbf{A}_{0} \cdot \overline{\mathbf{A}}_{1}$	1	0	0	0
$\mathbf{A}_{0} \cdot \mathbf{A}_{1}$	1	1	0	1
$\overline{\mathbf{A}}_{0} \cdot \mathbf{A}_{1}$	1	1	0	0

$$
\mathrm{GT}=\overline{\mathrm{B}}_{1} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{1} \cdot \mathrm{~A}_{1}+\overline{\mathrm{B}}_{0} \cdot \mathrm{~A}_{0} \cdot \mathrm{~A}_{1}
$$

Comparators in Verilog

- Implementing a comparator can be done by putting together the circuits as shown in the previous slide, or by using the comparison operators to make things a little easier:

```
module comparator_4_bit (a_gt_b, a_lt_b, a_eq_b, a, b);
input [3:0] a, b;
output a_gt_b, a_lt_b, a_eq_b;
assign a_gt_b = (a > b);
assign a_lt_b = (a < b);
assign a_eq_b = (a == b);
endmodule
```


Comparing larger numbers

- As numbers get larger, the comparator circuit gets more complex.
- At a certain level, it can be easier sometimes to just process the result of a subtraction operation instead.
Easier, less circuitry, just not faster.

