Week 2: Circuit Creation

You are here

From transistors to gates

- Transistors are semiconductor circuits that can connect the source and the drain together, depending on the voltage value at the gate.
 - NPN transistors (nMOS) are connected when the gate value is high.
 - PNP transistors (pMOS) are connected when the gate value is low.
- These are then used to make digital logic gates.

Transistor notation

NPN transistor:

PNP transistor:

Voltage values:

How gates are made

- To create logic gates:
 - Remember that transistors act like faucets for electricity.
 - The inputs to the logic gates determine if the outputs will be connected to high or low voltage.
 - <u>Example</u>: NOT gates:

Creating circuits with gates

Making logic with gates

- Logic gates like the following allow us to create an output value, based on one or more input values.
 - Each corresponds to Boolean logic that we've seen before in CSCA08/A48/A67:

Aside: notation

- While we're talking about notation...
 - AND operations are denoted in these expressions by the multiplication symbol.

• e.g. $A \cdot B \cdot C$ or $A \star B \star C \approx A \land B \land C$

- OR operations are denoted by the addition symbol.
 - e.g. $A+B+C \approx A \lor B \lor C$
- NOT is denoted by multiple symbols.

• e.g. $\neg A$ or A' or \overline{A}

XOR occurs rarely in circuit expressions.

• e.g. A ⊕ B

Making boolean expressions

 So how would you represent boolean expressions using logic gates?

Y = (A or B) and (not A or not B) or C

Now you are here

Creating complex circuits

- What do we do in the case of more complex circuits, with several inputs and more than one output?
 - If you're lucky, a truth table is provided to express the circuit.
 - Usually the behaviour of the circuit is expressed in words, and the first step involves creating a truth table that represents the described behaviour.

Circuit example

 The circuit on the right has three inputs (A, B and C) and two outputs (X and Y).

- What logic is needed to set X high when all three inputs are high?
- What logic is needed to set Y high when the number of high inputs is odd?

Combinational circuits

Small problems can be solved easily.

- Larger problems require a more systematic approach.
 - Example: Given three inputs A, B, and C, make output Y high in the case where all of the inputs are low, or when A and B are low and C is high, or when A and C are low but B is high, or when A is low and B and C are high.

Creating complex logic

- How do we approach problems like these (and circuit problems in general)?
- Basic steps:
 - 1. Create truth tables.
 - 2. Express as boolean expression.
 - 3. Convert to gates.
- The key to an efficient design?
 - Spending extra time on Step #2.

Example truth table

- Consider the following example:
 - "Given three inputs A, B, and C, make output Y high wherever any of the inputs are low, except when all three are low or when A and C are high."
 - This leads to the truth table on the right.
 - Is there a more compact way to describe this?

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterms and Maxterms

Minterms

- An easier way to express circuit behaviour is to assume the standard truth table format, and then list which input rows cause high output.
 - These rows are referred to as minterms.

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterm	Y
m ₀	0
m_1	1
m ₂	1
m ₃	1
m ₄	1
m 5	0
m ₆	1
m ₇	0

Minterms and maxterms

- A more formal description:
 - Minterm = an AND expression with every input present in true or complemented form.
 - Maxterm = an OR expression with every input present in true or complemented form.
 - For example, given four inputs (A, B, C, D):
 - Valid minterms:
 - $A \cdot \overline{B} \cdot C \cdot D$, $\overline{A} \cdot B \cdot \overline{C} \cdot D$, $A \cdot B \cdot C \cdot D$
 - Valid maxterms:
 - $A+\overline{B}+C+D$, $\overline{A}+B+\overline{C}+D$, A+B+C+D
 - Neither minterm nor maxterm:
 - $A \cdot B + C \cdot D$, $A \cdot B \cdot D$, A + B

What is This For?

- Minterms and maxterms are a shorthand to refer to rows of the truth table.
- minterms describe rows where output is high.
- maxterms describe rows where output is low.'
- We then OR minterms or AND maxterms.
 Don't mix them both

Back to minterms

- Circuits are often described using minterms or maxterms, as a form of logic shorthand.
 - Given n inputs, there are 2ⁿ minterms and maxterms possible (same as rows in a truth table).
 - Naming scheme:
 - Minterms are labeled as m_x , maxterms are labeled as M_x
 - The x subscript indicates the row in the truth table.
 - x starts at 0, and ends with n-1.
 - <u>Example</u>: Given 3 inputs
 - Minterms are m_0 ($\overline{A} \cdot \overline{B} \cdot \overline{C}$) to m_7 ($A \cdot B \cdot C$)
 - Maxterms are M_0 (A+B+C) to M_7 (A+B+C)

Quick Exercises

Given 4 inputs A, B, C and D write:

- Which minterm is this?
 A · B · C · D
- Which maxterm is this?
 A+B+C+D

$\rm m_o\, vs\, M_o$

- m_o is \overline{A} and \overline{B} and \overline{C}
 - $m_o = 1$ iff A = B = C = o (row o)
- M_o is A or B or C
 - $M_o = o \text{ iff } A = B = C = o \text{ (row o)}$
- Minterms tell us when the output is 1
- Maxterms tell us when the input is o

Using minterms and maxterms

- What are minterms used for?
 - A single minterm indicates a set of inputs that will make the output go high.
 - Example: m₂
 - Output only goes high in third row of truth table.

A	в	С	D	m ₂
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Using minterms and maxterms

- What happens when you OR two minterms?
 - Result is output that goes high in both minterm cases.
 - For m₂+m₈, both third and ninth rows of truth table result in high output.

A	в	С	D	m ₂	m ₈	m ₂ +m ₈
0	0	0	0	0	0	
0	0	0	1	0	0	
0	0	1	0	1	0	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	0	0	
0	1	1	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	1	
1	0	0	1	0	0	
1	0	1	0	0	0	
1	0	1	1	0	0	
1	1	0	0	0	0	
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	0	0	

Creating Boolean expressions

- Two canonical forms of Boolean expressions:
 - Sum-of-Minterms (SOM):
 - Since each minterm corresponds to a single high output in the truth table, the combined high outputs are a union of these minterm expressions.
 - Also known as: Sum-of-Products.
 - Product-of-Maxterms (POM):
 - Since each maxterm only produces a single low output in the truth table, the combined low outputs are an intersection of these maxterm expressions.
 - Also known as Product-of-Sums.

$Y = m_2 + m_6 + m_7 + m_{10}$ (SOM)

A	в	С	D	m ₂	m ₆	m 7	m 10	Y
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

$$Y = M_3 \cdot M_5 \cdot M_7 \cdot M_{10} \cdot M_{14}$$
 (POM)

A	в	С	D	M 3	M 5	M ₇	M ₁₀	M 14	Y
0	0	0	0						
0	0	0	1						
0	0	1	0						
0	0	1	1						
0	1	0	0						
0	1	0	1						
0	1	1	0						
0	1	1	1						
1	0	0	0						
1	0	0	1						
1	0	1	0						
1	0	1	1						
1	1	0	0						
1	1	0	1						
1	1	1	0						
1	1	1	1						

Using Sum-of-Minterms

- Sum-of-Minterms is a way of expressing which inputs cause the output to go high. Product-of-Maxterms is a way of expression which inputs cause the output to go low.
 - Assumes that the truth table columns list the inputs according to some logical or natural order.
- Minterm and maxterm expressions are used for efficiency reasons:
 - More compact that displaying entire truth tables.
 - Sum-of-minterms are useful in cases with very few input combinations that produce high output.
 - Product-of-maxterms useful when expressing truth tables that have very few low output cases...

Converting SOM to gates

 Once you have a Sum-of-Minterms expression, it is easy to convert this to the equivalent combination of gates:

B r e a k

Reducing circuits

Which is Better?

Which implementation do you prefer? Why?

Β.

A.

Reasons for reducing circuits

- Note example of Sum-of-Minterms circuit design.
- To minimize the number of gates, we want to reduce the boolean expression as much as possible from a collection of minterms to something smaller.
- This is where CSCA67 skills come in handy ③

Boolean algebra review

Axioms:

From this, we can extrapolate:

If one input of a 2-input AND gate is 1, then the output is whatever value the other input is.

$x \cdot 0 =$	x+1 =
x·1 =	x + 0 =
$X \cdot X =$	X+X =
$\mathbf{x} \cdot \mathbf{\overline{x}} =$	$X + \overline{X} =$
X =	

If one input of a 2input OR gate is o, then the output is whatever value the other input is.

Other Boolean identities

Commutative Law:

$$x \cdot y = y \cdot x$$
 $x+y = y+x$

Associative Law:

Distributive Law:

 $\begin{array}{rcl} x \cdot (y+z) &=& x \cdot y &+& x \cdot z \\ x+(y \cdot z) &=& (x+y) \cdot (x+z) \end{array} \xrightarrow{\mbox{Does this hold in conventional algebra}} \\ \end{array}$

Other boolean identities

Simplification Law:

 $x + (\overline{x} \cdot y) = x + y \qquad x \cdot (\overline{x} + y) = x \cdot y$

Consensus Law:

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

Other boolean identities

Absorption Law:

$$x \cdot (x+y) = x \qquad x+(x \cdot y) = x$$

De Morgan's Laws:

Converting to NAND gates

- De Morgan's Law is important because out of all the gates, NANDs are the cheapest to fabricate.
 - a Sum-of-Products circuit could be converted into an equivalent circuit of NAND gates:

This is all based on de Morgan's Law:

Reducing boolean expressions

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$$

 Now start combining terms, like the last two:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$$
$$+ A \cdot B$$

Reducing Boolean expressions

- Different final expressions possible, depending on what terms you combine.
- For instance, given the previous example:

If you combine the end and middle terms...

$$Y = B \cdot C + A \cdot C$$

Which reduces the number of gates and inputs!

Reducing Boolean expressions

- What is considered the "simplest" expression?
 - In this case, "simple" denotes the lowest gate cost
 (G) or the lowest gate cost with NOTs (GN).
 - To calculate the gate cost, simply add all the gates together (as well as the cost of the NOT gates, in the case of the GN cost).
 - In this example the cost per gate is 1

Karnaugh maps

Reducing Boolean expressions

- How do we find the "simplest" expression for a circuit?
 - Technique called Karnaugh maps (or K-maps).
 - Karnaugh maps are a 2D grid of minterms, where adjacent minterm locations in the grid differ by a single literal.
 - Values of the grid are the output for that minterm.

	B·C	В·С	в∙с	в·С
Ā	0	0	1	0
A	1	0	1	1

Karnaugh maps

- Karnaugh maps can be of any size, and have any number of inputs.
 - 4 inputs here

	<u>c</u> . <u>p</u>	<u>c</u> .d	C ·D	C ∙D
Ā ∙ B	m _o	m_1	m ₃	m_2
Ā·в	m_4	m_5	m ₇	m ₆
А∙В	m_{12}	m ₁₃	m_{15}	m_{14}
A ∙B	m ₈	m ₉	m_{11}	m_{10}

 Since adjacent minterms only differ by a single value, they can be grouped into a single term that omits that value.

Using Karnaugh maps

- Once Karnaugh maps are created, draw boxes over groups of high output values.
 - Boxes must be rectangular, and aligned with map.
 - Number of values contained within each box must be a power of 2.
 - Boxes may overlap with each other.
 - Boxes may wrap across edges of map.

Using Karnaugh maps

- Once you find the minimal number of boxes that cover all the high outputs, create Boolean expressions from the inputs that are common to all elements in the box.
- For this example:
 - Vertical box: B · C
 - Horizontal box: $A \cdot \overline{C}$
 - Overall equation: $Y = B \cdot C + A \cdot \overline{C}$

Karnaugh maps and maxterms

- Can also use this technique to group maxterms together as well.
- Karnaugh maps with maxterms involves grouping the zero entries to

	C+D	C+D	C+D	C+D
A+B	Mo	M ₁	M_3	M_2
A+B	M_4	M_5	M_7	M_6
Ā+B	M ₁₂	M ₁₃	M_{15}	M_{14}
A+B	M_8	M ₉	M_{11}	M_{10}

the zero entries together, instead of grouping the entries with one values.

Quick Exercise

$Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$

	<u>c</u> . <u>p</u>	<u>c</u> .d	C ·D	C ∙D
A ⋅ B	0	0	0	1
Ъ·в	1	1	0	0
Α·В	1	1	0	0
A ∙B	0	0	0	1

• $B\overline{C} + \overline{B}C\overline{D}$

Circuit Creation Algorithm

- Understand desired behaviour
- Write truth table
- Write SOM (or POM) for truth table
- Simplify SOM using K-Map
- Translate simplified SOM into Circuits
- Celebrate!