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From transistors to gates
§ Transistors are semiconductor 

circuits that can connect the 
source and the drain together, 
depending on the voltage value 
at the gate.
ú NPN transistors (nMOS) are 

connected when the gate value is 
high.

ú PNP transistors (pMOS) are 
connected when the gate value is 
low. 

§ These are then used to make 
digital logic gates.

Gate

DrainSource



Transistor notation

§ NPN transistor:

§ PNP transistor:

§ Voltage values:
+
-

Vcc



How gates are made

§ To create logic gates:
ú Remember that transistors act 

like faucets for electricity. 
ú The inputs to the logic gates 

determine if the outputs will be 
connected to high or low 
voltage.

ú Example: NOT gates:

A Y

A Y



Creating circuits with gates



Making logic with gates
§ Logic gates like the following allow us to 

create an output value, based on one or more 
input values.
ú Each corresponds to Boolean logic that we’ve 

seen before in CSCA08/A48/A67:

A
B Y A

B
Y A Y

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

A Y
0 1
1 0



Aside: notation

§ While we’re talking about notation…
ú AND operations are denoted in these expressions by 

the multiplication symbol.
  e.g.    A·B·C or    A*B*C » A˄B˄C

ú OR operations are denoted by the addition symbol.
  e.g.    A+B+C » A˅B˅C

ú NOT is denoted by multiple symbols.
  e.g.    ¬A or    A’ or    A

ú XOR occurs rarely in circuit expressions.
  e.g. AÅ B



Making boolean expressions

§ So how would you represent boolean
expressions using logic gates?

§ Like so: A
B

A
B

C

Y = (A or B) (not A or not B)and or C 



Now you are here

Assembly Language

Processors
Finite State 
Machines

Arithmetic 
Logic Units

Devices Flip-flops

Circuits

Gates

Transistors



Creating complex circuits

§ What do we do in the case of more complex 
circuits, with several inputs and more than 
one output?
ú If you’re lucky, a truth

table is provided to
express the circuit.

ú Usually the behaviour of
the circuit is expressed in
words, and the first step
involves creating a truth
table that represents the
described behaviour.



Circuit example
§ The circuit on the 

right has three 
inputs (A, B and C)
and two outputs
(X and Y).

Logic 
Circuit

A
B
C

X

Y

§ What logic is needed to set X high when all 
three inputs are high?

§ What logic is needed to set Y high when the 
number of high inputs is odd?



Combinational circuits

§ Small problems can be solved easily.

§ Larger problems require a more systematic 
approach.
ú Example: Given three inputs A, B, and C, make output 
Y high in the case where all of the inputs are low, or 
when A and B are low and C is high, or when A and C
are low but B is high, or when A is low and B and C are 
high. 

A
B

XC

A
B

C
Y



Creating complex logic

§ How do we approach
problems like these (and
circuit problems in general)?

§ Basic steps:
1. Create truth tables.
2. Express as boolean expression.
3. Convert to gates.

§ The key to an efficient design?
ú Spending extra time on Step #2.



Example truth table

§ Consider the following 
example:
ú “Given three inputs A, B, and 
C, make output Y high 
wherever any of the inputs are 
low, except when all three are 
low or when A and C are high.”

ú This leads to the truth table 
on the right.

ú Is there a more compact 
way to describe this?

A B C Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0



Minterms and Maxterms



Minterms
§ An easier way to express circuit behaviour is 

to assume the standard truth table format, 
and then list which input rows cause high 
output.
ú These rows are referred to as minterms.

A B C Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Minterm Y
m0 0
m1 1
m2 1
m3 1
m4 1
m5 0
m6 1
m7 0



Minterms and maxterms
§ A more formal description:

ú Minterm = an AND expression with every input 
present in true or complemented form.

ú Maxterm = an OR expression with every input 
present in true or complemented form.

ú For example, given four inputs (A, B, C, D):
  Valid minterms:
­ A·B·C·D, A·B·C·D, A·B·C·D

  Valid maxterms:
­ A+B+C+D, A+B+C+D, A+B+C+D

  Neither minterm nor maxterm:
­ A·B+C·D, A·B·D, A+B



What is This For?

§ Minterms and maxterms are a shorthand to 
refer to rows of the truth table.

§ minterms describe rows where output is high.

§ maxterms describe rows where output is low.’

§ We then OR minterms or AND maxterms.
ú Don’t mix them both



Back to minterms
§ Circuits are often described using minterms or 

maxterms, as a form of logic shorthand.
ú Given n inputs, there are 2n minterms and maxterms

possible (same as rows in a truth table).
ú Naming scheme: 

  Minterms are labeled as mx, maxterms are labeled as Mx
­ The x subscript indicates the row in the truth table.
­ x starts at 0, and ends with n-1.

ú Example: Given 3 inputs –
  Minterms are m0 (A·B·C) to m7 (A·B·C)
  Maxterms are M0 (A+B+C) to M7 (A+B+C)



Quick Exercises

§ Given 4 inputs  A, B, C and Dwrite:
ú m9 => A·B·C·D
ú m15 => A·B·C·D
ú m16 => N/A for four inputs we go up to m15

ú M2 => A+B+C+D

§ Which minterm is this?
ú A·B·C·D => m4

§ Which maxterm is this?
ú A+B+C+D =>   M1



m0 vs M0

§ m0 is  A and B and C
ú m0 = 1 iff A = B = C = 0 (row 0)

§ M0 is A or B or C
ú M0 = 0 iff A = B = C = 0 (row 0)

§ Minterms tell us when the output is 1
§ Maxterms tell us when the input is 0



Using minterms and maxterms

§ What are minterms
used for?
ú A single minterm

indicates a set of inputs 
that will make the 
output go high.

ú Example: m2
ú Output only goes high 

in third row of truth 
table.

A B C D m2
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0



Using minterms and maxterms

§ What happens when 
you OR two minterms?
ú Result is output that 

goes high in both 
minterm cases.

ú For m2+m8, both third 
and ninth rows of truth 
table result in high 
output.

A B C D m2 m8 m2+m8
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 1
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 0 1 1
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0



Creating Boolean expressions

§ Two canonical forms of Boolean expressions:
ú Sum-of-Minterms (SOM):

  Since each minterm corresponds to a single high 
output in the truth table, the combined high outputs 
are a union of these minterm expressions.

  Also known as: Sum-of-Products.

ú Product-of-Maxterms (POM):
  Since each maxterm only produces a single low 

output in the truth table, the combined low outputs 
are an intersection of these maxterm expressions.

  Also known as Product-of-Sums.



Y = m2 + m6 + m7 + m10 (SOM)
A B C D m2 m6 m7 m10 Y

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 1

0 1 1 1 0 0 1 0 1

1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 1 1

1 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0



Y = M3· M5· M7· M10· M14 (POM)
A B C D M3 M5 M7 M10 M14 Y

0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1

0 0 1 1 0 1 1 1 1 0

0 1 0 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 0

0 1 1 0 1 1 1 1 1 1

0 1 1 1 1 1 0 1 1 0

1 0 0 0 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1 1

1 0 1 0 1 1 1 0 1 0

1 0 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1



Using Sum-of-Minterms

§ Sum-of-Minterms is a way of expressing which 
inputs cause the output to go high. Product-of-
Maxterms is a way of expression which inputs 
cause the output to go low.
ú Assumes that the truth table columns list the inputs 

according to some logical or natural order.
§ Minterm and maxterm expressions are used for 

efficiency reasons:
ú More compact that displaying entire truth tables.
ú Sum-of-minterms are useful in cases with very few 

input combinations that produce high output.
  Product-of-maxterms useful when expressing truth 

tables that have very few low output cases…



Converting SOM to gates

§ Once you have a Sum-of-Minterms
expression, it is easy to convert this to the 
equivalent combination of gates:

¬A

Y

¬B
¬C
¬A
¬B
C
¬A
B
¬C
¬A
B
C

m0 + m1 + m2 + m3 = 

A·B·C + A·B·C + 
A·B·C + A·B·C = 



Reducing circuits

B
r
e
a
k



Reducing circuits



Which is Better?

§ Which implementation do you prefer? Why?

A.

B.



Reasons for reducing circuits

§ Note example of Sum-of-Minterms circuit design.
§ To minimize the number of gates, we want to reduce 

the boolean expression as much as possible from a 
collection of minterms to something smaller.

§ This is where CSCA67 skills come in handy J

¬A

Y

¬B
¬C
¬A
¬B
C
¬A
B
¬C
¬A
B
C

YA



Boolean algebra review
§ Axioms:

§ From this, we can extrapolate:

0·0 = 0 0·1 = 1·0 = 0
1·1 = 1 if x = 1, x = 0

x·0 = 0 x+1 = 1
x·1 = x x+0 = x
x·x = x x+x = x
x·x = 0 x+x = 1
x = x 

If one input of 
a 2-input AND 
gate is 1, then 
the output is 
whatever 
value the 
other input is.

If one input of a 2-
input OR gate is 0, 
then the output is 
whatever value 
the other input is.



Other Boolean identities
§ Commutative Law:

§ Associative Law:

§ Distributive Law:

x·y = y·x x+y = y+x

x·(y·z) = (x·y)·z
x+(y+z) = (x+y)+z

x·(y+z) = x·y + x·z
x+(y·z) = (x+y)·(x+z)

Does this hold in 
conventional 
algebra?



Other boolean identities
§ Simplification Law:

§ Consensus Law:

ú Proof by Venn diagram:

x+(x·y) = x+y x·(x+y) = x·y

x·y + x·z + y·z = x·y + x·z

x

yzZ

x·y

x·z



Other boolean identities
§ Absorption Law:

§ De Morgan’s Laws:

x·(x+y) = x x+(x·y) = x

x·y = x+y
x+y = x·y



Converting to NAND gates
§ De Morgan’s Law is important because out of all 

the gates, NANDs are the cheapest to fabricate.
ú a Sum-of-Products circuit could be converted into an 

equivalent circuit of NAND gates:

§ This is all based on de Morgan’s Law: 



Reducing boolean expressions

§ Using SOM:

§ Now start combining 
terms, like the last two:

A B C Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Y = A·B·C + A·B·C +   
A·B·C + A·B·C

Y = A·B·C + A·B·C    
+ A·B



Reducing Boolean expressions

§ Different final expressions possible, depending 
on what terms you combine.

§ For instance, given the previous example:

§ If you combine the end and middle terms…

§ Which reduces the number of gates and inputs!

Y = A·B·C + A·B·C + A·B·C + A·B·C

Y = B·C + A·C



Reducing Boolean expressions
§ What is considered the “simplest” expression?

ú In this case, “simple” denotes the lowest gate cost 
(G) or the lowest gate cost with NOTs (GN).

ú To calculate the 
gate cost, simply 
add all the gates 
together (as well 
as the cost of the 
NOT gates, in the 
case of the GN cost).

ú In this example the
cost per gate is 1

A

Y

¬B
¬C
A
B
C
A
B
¬C
¬A
B
C

G(Y) = 
GN(Y) = 

5 
8



Karnaugh maps



Reducing Boolean expressions

§ How do we find the “simplest” expression for 
a circuit?
ú Technique called Karnaugh maps (or K-maps).
ú Karnaugh maps are a 2D grid of minterms, where 

adjacent minterm locations in the grid differ by a 
single literal.

ú Values of the grid are the output for that minterm.

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1



Karnaugh maps

§ Karnaugh maps
can be of any 
size, and have 
any number of 
inputs.
ú 4 inputs here

§ Since adjacent minterms only differ by a 
single value, they can be grouped into a 
single term that omits that value.

C·D C·D C·D C·D

A·B mo m1 m3 m2

A·B m4 m5 m7 m6

A·B m12 m13 m15 m14

A·B m8 m9 m11 m10



Using Karnaugh maps

§ Once Karnaugh maps are created, draw 
boxes over groups of high output values.
ú Boxes must be rectangular, and aligned with map.
ú Number of values contained within each box must 

be a power of 2.
ú Boxes may overlap with each other.
ú Boxes may wrap across edges of map.

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1



Using Karnaugh maps

§ Once you find the minimal number of boxes that 
cover all the high outputs, create Boolean 
expressions from the inputs that are common to 
all elements in the box.

§ For this example:
ú Vertical box:   B·C
ú Horizontal box:   A·C
ú Overall equation:    Y = B·C + A·C

B·C B·C B·C B·C

A 0 0 1 0

A 1 0 1 1

B

Y
C
A
C



Karnaugh maps and maxterms

§ Can also use this 
technique to
group maxterms
together as well.

§ Karnaugh maps
with maxterms
involves grouping 
the zero entries together, instead of grouping 
the entries with one values.

C+D C+D C+D C+D

A+B Mo M1 M3 M2

A+B M4 M5 M7 M6

A+B M12 M13 M15 M14

A+B M8 M9 M11 M10



Quick Exercise

§ BC + BCD

Y = A·B·C·D + A·B·C·D + A·B·C·D +
A·B·C·D + A·B·C·D + A·B·C·D    

C·D C·D C·D C·D

A·B 0 0 0 1

A·B 1 1 0 0

A·B 1 1 0 0

A·B 0 0 0 1



Circuit Creation Algorithm

§ Understand desired behaviour
§ Write truth table
§ Write SOM (or POM) for truth table
§ Simplify SOM using K-Map
§ Translate simplified SOM into Circuits
§ Celebrate!


