Lab 5 Preparation

Lab 5 Components

- Part I: Create a Finite State Machine
- Make a clocked sequence recognizer.
- Part II: Control a datapath
- Combine datapath + FSM to perform ALU functions.
- Part III: Divider (optional!)
- Dividing number using a simple adder/subtractor
- Bonus, for those who thinks the labs are not difficult enough!

New Verilog Syntax

- The localparam keyword:

```
localparam A = 3'b000;
```

- Defines values that are replaced at compile time.
- Like a constant!
- Good for assigning flip-flop values to states.
- Makes the state table easy to read.

Part I: Finite State Machine

- Recognize 1111 or 1101 sequence.
- Starter code provided.
- Case statement that updates flip-flop values (stored in a 3 -bit register).
- You fill in the missing case conditions.

Part II: Controlling datapath

- Remember the ALU datapath example we did in class?
- This is another! ©
- We provide the code
 for the datapath, you provide the controller FSM.
- Send signals to the datapath components to move the data around, and make the computation happen.
- Provide state diagram in prelab, and compare with Quartus-generated one.

Part III: Divider Circuit

- Note:This part is optional, but is excellent practice!
- Basic idea from decimal long division:
- From left to right, find where the divisor can be subtracted from the dividend.
- Doing this in binary is simpler, except that we keep the divisor static, and move everything else!

