CSCB58 - Lab 4

Clocks and Counters

Learning Objectives

The purpose of this lab is to learn how to create counters and to be able to control when operations occur when
the actual clock rate is much faster. We will also be looking at some features of Quartus that allow you to analyze
things you’ve built that may be helpful when debugging more complicated systems.

Marking Scheme

Prelab /3
Part I (in-lab) /1
Part II (in-lab) /1
Part III (in-lab) /2

Clean work-space with all materials returned to their original state / 1

TOTAL /8

Write your name, UTorID, and student ID:

Name:

Student ID:

UTorlID:

Write your partner’s name, UTorID, and student ID:

Partner name:

Partner student ID:

Partner UTorlD:

You may run into bounce problems using KEYs. If so, you are welcome to try using any of the keys if you
find they preform better, or simply change to one of the switches.

Part 1

Consider the circuit in Figure 1. It is a 4-bit synchronous counter that uses four T-type flip-flops to implement
a counter. The counter increments its value on each positive edge of the clock if the Enable signal is asserted.
The counter is reset to 0 by setting the Clear_b signal low — it is an active-low asynchronous clear. You are to
implement an 8-bit counter of this type.

EnableJ>T—|QA‘D“—T—QALD“_T Q T Q—

Clock T> Q — Q —

Clear b

Ol

-1
Y
o

Figure 1: A 4-bit counter.

An asynchronous clear means that as soon as the Clear_b signal changes (here from 1 to 0 since we have an
active-low signal), irrespective of whether this change happened at the positive clock edge or not, the T flip-flop
should be reset. This is contrary to the synchronous reset, which you implemented in the previous lab, where the
D flip-flop could be reset only at the positive edge of the clock.

HINT: Since the state of the flip-flop can change both at the positive edge of the clock or asynchronously when
the Clear_b signal becomes low, you need to include both signals in the sensitivity list of your always block.
You can separate multiple signals in the sensitivity list with commas as follows, adding a posedge or negedge
transition keyword, as needed: always @ (<edge> signal_a, <edge> signal_b)

Older Verilog standards, which are still supported, used the word or in the sensitivity list instead of a comma.

Perform the following steps:
1. Draw the schematic for an 8-bit counter using the same structure as shown in Figure 1. (PRELAB)

2. Annotate all Q outputs of your schematic with the bit of the counter Q7QsQ5Q1Q3Q2Q1 Qo they corre-
spond to. (PRELAB)

3. Write the Verilog corresponding to your schematic. Your code should use a module that is instantiated eight
times to create the counter. (PRELAB)

4. Compile the circuit in Quartus and answer the following questions:

(a) How many logic elements are used to implement your circuit?
In Quartus, look at your Logic Utilization (in ALMs - Adaptive Logic Modules)
in the Fitter Report found by double clicking Compile Design -> Fitter -> View Report
in the Tasks pane on the left. This is an indication of how many FPGA resources are used to build your
circuit. How does the size of your circuit compare to the size of the FPGA you are using?

(b) What is the maximum frequency, F,,y, at which your circuit can be operated? To find this maximum
frequency, compile your code in Quartus, and then run the TimeQuest Timing Analyser. The Fj,,x
summary can be found in on the left in Reports -> Datasheets -> Report Fmax Summary.
Refer to the Using TimeQuest Timing Analyzer document found on the Intel/Altera website for more
information:

https://fpgauniversity.intel.com/redirect/materials?id=/pub/Intel_Material/

16.1/Tutorials/Verilog/Timequest .pdf

https://fpgauniversity.intel.com/redirect/materials?id=/pub/Intel_Material/16.1/Tutorials/Verilog/Timequest.pdf
https://fpgauniversity.intel.com/redirect/materials?id=/pub/Intel_Material/16.1/Tutorials/Verilog/Timequest.pdf

5. Augment your Verilog code to use the push button KEY, as the Clock input, switches SW; and SWj as
Enable and Clear b inputs, and 7-segment displays HEX0 and HEX] to display the hexadecimal count
as your circuit operates. Simulate your circuit to ensure that you have done this correctly.

6. Use the Quartus IT RTL Viewer to see how the Quartus II software synthesized your circuit. You can access
the RTL viewer on Quartus via Tools —> Netlist Viewers —-> RTL Viewer. You can zoom
into the various building blocks of your circuit by double-clicking on them, to get more information about
their implementation. What are the differences in comparison with Figure 1?

7. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit. Demonstrate the
working circuit to your TA.

Lab continues in the next page...

Part 11

Another way to specify a counter is by using a register and adding 1 to its value. This can be accomplished using
the following Verilog statement:
Q <=0 + 1'bl;

Figure 2 shows an example of a code fragment of a counter that counts from O to F' in hexadecimal. The counter
also has a synchronous clear (Clear_b), a parallel load feature (ParLoad), and an enable input (Enable) to
turn the counting on and off.

reg [3:0] g; // declare g
wire [3:0] d; // declare d
always @ (posedge clock) // triggered every time clock rises
begin
if (Clear_b == 1'b0) // when Clear_b is 0...
q <= 0; // set g to O
else if (ParLoad == 1'bl) // ...otherwise, check if parallel load
q <= d; // load d
else if (g == 4'bl111) // ...otherwise if g is the maximum counter value
q <= 0; // reset g to O
else if (Enable == 1'bl) // ...otherwise update g (only when Enable is 1)
q <= g + 1'bl; // increment g
// g <= g - 1'bl; // alternatively, decrement g
end

Figure 2: Example counter code fragment

Observe that g is declared as a 4-bit value making this a 4-bit counter. The check for the maximum value is
not necessary in the example above. Why? If you wanted this 4-bit counter to count from 0-9, what would you
change?

In this part of the lab you will design and implement a circuit using counters that successively flashes the hexadec-
imal digits O through F' on the 7-segment display HEX0. You will use two switches, SW; and SWy, to determine
the speed of flashing according to the following table:

SW[1] SWI[O0] Speed
0 0 Full (50 MHz)
0 1 1 Hz
1 0 0.5Hz
1 1 0.25 Hz

Full speed means that the display flashes at the rate of the 50 MHz clock provided on the DE2 board. At this
speed, what do you expect to see on the display? (HINT: compute the period of that clock. If it has 50,000,000
cycles per second, what is the length of each cycle?)

You must design a fully synchronous circuit, which means that every flip flop in your circuit should be clocked by
the same 50 MHz clock signal.

To derive the slower flashing rates you should use a counter, let us call it RateDivider, that is also clocked with
the 50 MHz clock. The output of RateDivider can be used as part of a circuit to create pulses at the required rates.
Every time RateDivider has counted the appropriate number of clock edges, a pulse should be generated for one
clock cycle. Figure 3 shows a timing diagram for a 1 Hz Enable/pulse signal with respect to a 50 MHz clock.
This pulse signal should be used to control the enable signal of your main 0 to F' counter. How large a counter is
required to count 50 million clock cycles? How many bits would you need to represent such a value?

50 Million Clock Cycles 50 Million Clock Cycles

50MHZ| |0.|oo o o o 0o o

y

LY
A
A

1'OOHZ e o 0 0 0 " e 0o 0 0 o "
Enable — . o=

Figure 3: Timing diagram for a 1 Hz enable signal

A common way to provide the ability to change the number of pulses counted is to parallel load the counter with
the appropriate value and count down to zero. For example, if you want to count 50 million clock cycles, load the
counter with 50 million - 1. (Why subtract 1?) Outputting the pulse when the counter is zero can be done using a
conditional assign statement like:

assign Enable = (RateDivider == 4'b0000) 2 1 : 0;

Note: the above example assumes that RateDivider is a four-bit counter. You will need to adjust its width depend-
ing on the counter width you use.

Recall that an Enable signal determines whether a flip flop, register, or counter will change on a clock
pulse. The pulses from the rate divider can be used to drive an Enable signal on the hexadecimal counter (let
us call this the DisplayCounter) that is counting from 0 through F.

In summary, you will need two counters. RateDivider will need the ability to parallel load the appropriate value
selected by the switches so that Enable pulses are generated at the required frequency. DisplayCounter counts
through the hexadecimal values, but only increments when its Enable input is 1. You may use the sample
counter code fragment in Figure 2 as a model to build your counters, adding or deleting features to meet the
requirements for each counter.

Perform the following steps:

1. Draw a schematic of the circuit you wish to build. Work through the circuit manually to ensure that it will
work according to your understanding. (PRELAB)

2. Write a Verilog module that realizes the behaviour described in your schematic. Your circuit should have
the clock and the two switches as inputs. (PRELAB)

In addition to switches SWj_¢ used to control the rate the hex digits are flashed on HEXO0, you will also
need to use one or two more switches (e.g., as a clear signal). Make sure to label which switches you use
for which purpose on your schematic. (PRELAB)

The 50 MHz clock is generated on the DE2 board and available to you on a pin labeled in the gsf file as
CLOCK-50. This means that you can access the 50 MHz clock by declaring a port called CLOCK_50 in
your top-level module.

3. Compile the project.

4. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit. And demonstrate
your working code to the TA.

Part 111

In this part of the exercise you are to design and implement a Morse code encoder.

Morse code uses patterns of short and long pulses to represent a message. Each letter is represented as a sequence
of dots (a short pulse), and dashes (a long pulse). For example, starting from A, the first eight letters of the alphabet
have the following representation:

A [y—

B —ooeo
C —eo—o
D —eoo0
E °

F ee—o
G — o
H XXX

Your circuit should take as input one of the eight letters of the alphabet starting from A (as in the table above) and
display the Morse code for it on LEDR. Use switches SW5_q and push buttons KEY; _ as inputs. When a user
presses KEY1, the circuit should display the Morse code for a letter specified by SWa_q (000 for A, 001 for B,
etc.). Use 0.5-second pulses to represent dots, and 1.5-second pulses to represent dashes. The time between pulses
is 0.5 seconds. Push button KEY{ should function as an asynchronous reset.

You will likely need a shift register, a rate divider similar to what you used in Part II, and a lookup table (LUT)
to store the Morse codes. Let us first look into how we will store the Morse code representation for each letter.
Since the minimum time for a pulse (dot) or a space is 0.5 seconds, we will set each 0 or 1 (i.e., a single bit) to
correspond to a display duration of 0.5 seconds. Therefore a single 1 bit will correspond to a dot (the LED should
stay on for 0.5 seconds), while three 1s in a row (i.e., 111) correspond to a dash (the LED should stay on for
3 x 0.5 = 1.5 seconds). In order to differentiate between a dot and a dash, or between multiple successive dots or
multiple successive dashes, we will “inject” zeros between them (i.e., the LED should stay off for 0.5 seconds —
the time required between pulses). An LED that is off signifies either a pause (e.g., a transition between a Morse
dash and a dot), the end of a transmission, or no transmission.

Using this representation, the Morse code for letter F would be stored as: 1010111010000000, assuming
we use 16-bits to represent it: dot, pause, dot, pause, dash, pause, dot, pause. Write the Morse code binary
representation of all eight letters (A to H) following the same approach. You will observe that a different number of
bits is needed for each letter. You should figure out the minimum number of bits needed accounting for all letters,
since all letters need to be stored using the same pattern length. The last bit of any Morse code representation
should be 0.

Lab continues in next page...

Fill in Table 1 below as part of your prelab. You will need to decide on the pattern length. Complete the pattern
representation for letter F with as many zeros as needed based on the pattern length you chose. (PRELAB)

Letter | Morse Code | Pattern Representation (pattern length is bits)
A L —
B —ooo
C —eo—o
D —eoo0
E °
F eeo—o 1010111010
G — o
H ececoe

Table 1: Morse Pattern Representation with fixed bit-width (PRELAB)

The LUT which will store the Morse code patterns (binary representations) can be implemented as a multiplexer
with hard-coded inputs corresponding to the required patterns. The output pattern is selected according to the
letter to be displayed.

Now that we have stored all possible patterns and can retrieve the one we want, we need to display the pattern on
the LED one bit at a time for a duration of 0.5 seconds per bit. To do that you need to load a shift register in parallel
with that pattern. The register should have the appropriate bit-width. Then, you need to shift the pattern out of the
register, one bit at a time, and display each bit on the LEDR [0] for the appropriate interval (0.5 seconds per bit).
To summarize, once the user presses KEY [1] you need to load a shift register with the appropriate pattern (for the
letter specified by SW[2:0]) and display all bit-width bits of that pattern on LEDR [0] . Note that you should not
display a given letter in a loop (i.e., you should re-display the same letter only if the user presses KEY [1] again).

In the event that you have not gotten part II of the lab working (i.e. you have not been able to implement the 0.5
second enable signal), for part marks you may manually clock your shift register using one of the KEY inputs.

Perform the following steps.
1. Use Table 1 to determine your codes and bit-width.

2. Design your circuit by first drawing a schematic of the circuit. Think and work through your schematic to
make sure that it will work according to your understanding. (PRELAB)

3. Write a Verilog module that realizes the behaviour described in your schematic. (PRELAB)

4. Download the compiled circuit into the FPGA. Test the functionality of the circuit. Demonstrate your
working code to the TA.

5. Submit your .v files for all parts of this lab to Quercus.

