
Lab 3 Preparation

Parts of Lab 3

 Part 1: Make a latch out
of NAND gates.

 Back to the breadboard!

 Part 2: Add shift operations to your ALU.

 Part 3: Make a shift register out of shift bits

 Like making a ripple carry adder out of full adder
units.

Shift Operations

 Logic Shift (left or right)
 Verilog Operators: << , >>
 X >> N

 Produces a new vector with the
value of X shifted right by N bits.

 The Nmost-significant bits
of the new vector are filled with zeros.

 X << N

 Produces a new vector with
the value of X shifted left by N bits.

 The N least significant bits of the new vector are filled with zeros.

 Example:
 3’b100 >> 2 will produce 3’b001
 3’b100 << 2 will produce 3’b000

wire [2:0] a, b;

wire c;

assign c = 1'b1;

assign a = (3'b011 >> 1'b1);

assign b = a << c;

Why is Shift Important?

 What is the sum of 01101101 and 01101101?

 Try the following:
 00110 << 1

 00110 >> 1

11011010 Note what’s
happening here!

A << N results in A*2N

A >> N results in A/2N

Logic vs. Arithmetic Shift

 Arithmetic right shifts replicate the sign bit
instead of using zero to fill in the most-
significant bit(s).

 Needed if dealing with signed numbers (e.g., 2’s
complement notation)

 Examples:

 Arithmetic Right Shift:

 3’b100 >>> 2will produce 3’b111

 Logic Right Shift:

 3’b100 >> 2 will produce 3’b001

Sign Extension – Why?

 Used in binary arithmetic when we want to
increase the # bits used to represent a
number while maintaining its sign/value.

 Let’s say you want to add these two signed
numbers . How would you do that?
 0011_1101

 0110

 What if the second number was 1110 instead?

Sign extend this one!

Sign Extension – How?

 You need to replicate the sign
(i.e. the most significant bit in
2’s complement form)
 Replicate 0 for positive numbers

 Replicate 1 for negative numbers

Implementing D-FF in Verilog

module my_dff (clk, reset_n, d, q);

input clk;

input d;

input reset_n;

output q;

reg q;

always @(*) begin

q <= d;

end

endmodule

Need to change this so that q
follows d on the positive or
negative edge of the clock.

The (<=) operator is for non-
blocking assignments. Use
this for sequential circuits.

Implementing D-FF in Verilog

module my_dff (clk, reset_n, d, q);

input clk;

input d;

input reset_n;

output q;

reg q;

always @(posedge clk) begin

q <= d;

end

endmodule

The sensitivity list is now
correct. We’ll fix the body
of the always block next.

Could use negedge keyword
for negative edge-triggered

behaviour.

D Flip-Flop w/ a Reset Signal

 Reset: This is how you put your hardware in a
known initial state!

always @(posedge clk) begin

if (reset_n == 1’b0)

q <= 0;

else

q <= d;

end

if-else used within
an always block.
Synthesizes to a

multiplexer.

Note: Reset is usually active-low (meaning it
triggers when reset_n is low). Here we
have an active-low synchronous reset signal.

When you test/demo your design

 Synchronous Reset
 Needs to be 0 @ the active clock edge.

 Be careful with KEYs and active low signals.
 A KEY on the DE1-SoC board is 0 when pressed.

 Here’s an example
 Assume I have KEY[0] as my clock and KEY[1] as

a signal that is active-low.

 How can you test for a scenario where KEY[1] is
low at the positive edge of your clock?
 Think about how you will need to press these two keys.

Load register

 N-bit number => n D-flipflops with same
clock signal

 You can load a register’s value (all bits at
once), by feeding signals into each flip-flop:

 In this example: a 4-bit load register.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Clk

D3 D2 D1 D0

Least

Significant
Bit

Design Guidelines

 Combinational Circuits (e.g., always @(*))
 Use blocking assignment statements =

 Sequential Circuits (e.g., always @(posedge
clock))
 Use non-blocking assignment statements <=

 Don’t mix assignment types in the same always
block! 

 Order of always blocks doesn’t matter; neither
does the order of always blocks and assign
statements.

