
CSCB58 - Lab 2
The case statement, Adders and ALUs

Learning Objectives

In this lab you will design (a) multiplexers using the case statement, (b) a simple ripple-carry adder, and (c) an
Arithmetic Logic Unit (ALU). You will also gain more practice with hierarchical design in Verilog and with using
binary and hexadecimal numbers.

Marks

Your TA must record the marks on this page as you complete each section of the lab. It is your responsibility to
ensure that by the end of the lab, all work has been recorded appropriately.

Prelab /3
Part I (in-lab) /1
Part II (in-lab) /1
Part III (in-lab) /2
Clean work-space with all materials returned to their original state /1
TOTAL /8

Preparation Before the Lab

Review the instructions in Lab 1 about preparations.

You are required to complete Parts I to III of the lab by designing your schematics, and writing your Verilog code.
Show your schematics and well commented code to your TA at the beginning of the lab session.

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

1



Write your name, UTorID, and student ID:

Name:

Student ID:

UTorID:

Write your partner’s name, UTorID, and student ID:

Partner name:

Partner student ID:

Partner UTorID:

2



Background

Representing Constants

Verilog has a specific notation for representing constants (i.e., literal values). The following code snippet creates
a 1-bit wire named a, which is connected to ground (logic-0).

wire a;
assign a = 1'b0;

The number before the single quote is a decimal number representing the bit width (i.e., number of binary digits,
bits). This is one for a single wire, but is higher for a bus (i.e., a collection of wires). The letter after the single
quote is called the radix. Its possible values are b, d or h to specify whether the value that follows is in binary,
decimal or hexadecimal notation. (Octal is another valid representation albeit rarely used.) Lastly, the value after
the radix is the number in that numerical representation.

For example, 2'b10 corresponds to number two, while 8'h1a (or 8'h1A) to number 26. The latter is written in
binary as 8'b0001_1010 and in decimal as 8'd26. Verilog allows you to use underscores to separate groups
of bits to improve readability. Here we separated groups of 4-bits as they each correspond to a single hexadecimal
digit.

More Verilog Operators

This section presents various Verilog operators that you might find useful for this lab. You are also encouraged to
refer to the Verilog tutorials on Quercus, as well as the collection of online Verilog material posted on Quercus.

• Arithmetic operators: + (addition), - (subtraction), * (multiplication), / (division), % (remainder), **
(exponentiation).

• Reduction operators: These are unary operators that reduce a vector to a single bit value. The operators are:
& (AND all bits), | (OR all bits), and ˆ (XOR all bits). You can prepend ˜ to any of these to get reduction
NAND, NOR and XNOR operators respectively. An example of a reduction XOR operation is ˆ 3'b010
which will produce 1'b1.

• Concatenation: Verilog uses curly braces for concatenation. For example, {2'b01, 1'b1} will produce
3'b011. Concatenation can also be used in the left hand side of an assignment statement.

• Replication: {n{x}} will replicate n-times the value x. For example, {3{2'b01}} is equivalent to
6'b010101.

Part I

For this part of the lab, you will be learning how to use always blocks and case statements to design a 7-to-1
multiplexer.

Like a module, an always block can have inputs and outputs. A module can contain any number of always
blocks just as any module can contain any number of other module instantiations. The difference is that an
always block can only instantiate logic within the module where it is defined. A module can be instantiated in
any other module, i.e., it can be reused.

Any output of an always block must have been declared as a reg type in the module containing the always
block. Please note that you cannot use a wire for that purpose.

The model Verilog code for a 7-to-1 multiplexer built using a case statement is shown below. The seven inputs are
from the signals named Input[6:0]. The output is called Out. The select lines are called MuxSelect[2:0].

3



reg Out; // declare the output signal for the always block

always @(*) // declare always block with sensitivity *
begin

case (MuxSelect[2:0]) // start case statement
3'b000: Out = MuxInput[0]; // handle MuxSelect equals 0
3'b001: Out = MuxInput[1]; // handle MuxSelect equals 1
3'b010: Out = MuxInput[2]; // handle case 2
3'b011: Out = ... // case 3
3'b100: Out = ... // case 4
3'b101: Out = ... // case 5
3'b110: Out = ... // case 6
default: Out = 1'b0; // default case (all other cases)

endcase
end

An always block is triggered to execute in simulation whenever there is a change in the sensitivity list. In the
example above, this list is defined as the asterisk character (*), meaning that whenever any input to the always
block is changed, the code in the always block will be simulated. We can change the asterisk to certain inputs to
limit when this code is triggered, but this can lead to simulations that do not match the real hardware. One of the
(unfortunate) features of the Verilog language. The accepted practice today is to always use the asterisk in your
always block for combinational logic, i.e., any logic where the outputs rely strictly on the inputs. You will learn
more about combinational and sequential logic later. For now, use the asterisk in the always block for a case
statement as shown above.

It is important to have a default case to ensure that all cases are covered. Otherwise, you can again have
simulations that do not match the hardware. Yet another Verilog feature! Your goal is to write Verilog that will
generate hardware that exactly matches the simulation, so make sure to include the default statement.

(If you want to know more, read on. When you execute an always block, the use of if and case statements
can take you through different code paths. If you reach the end of the always block and there is an unassigned
(reg) variable, then a memory element, a latch, will be created because the meaning is that the variable keeps its
previous value, so a memory element is inferred. The problem becomes more subtle because if MuxSelect in
the above example is three bits, there are actually more than eight cases! Each bit can be (1, 0, x (unknown value),
z (high-impedance)), so there are really 43 = 64 possible paths. Synthesis tools will likely assume only (1,0) and
create the correct circuit, but the simulator may not do the same. Always, always put in the default statement.
If you did not understand the above, at least you, hopefully, now see how Verilog can have subtle side effects that
can cause problems. To avoid these issues, we will show you coding styles that help avoid most problems.)

Using SW6−0 as the data inputs and SW9−7 as the select signals, display on LEDR0 the output of a 7-to-1 multi-
plexer using the case statement style as shown above.

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Be prepared to
explain it to the TA as part of your preparation. (PRELAB)

2. Create a new Quartus II project for your circuit.

3. Include your Verilog file for the circuit in your project. Use switches SW9−7 on the DE2 board as the
MuxSelect inputs and switches SW6−0 as the Input data inputs. Connect the output to LEDR0. (PRELAB)

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

6. As always, demonstrate to the TA.

4



Part II

Figure 2a shows a circuit for a full adder, which has the inputs a, b, and ci, and produces the outputs s and co.
Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit
binary sum cos = a + b + ci. Please note that the + operator here means addition and not logic-OR. Figure 2d
shows how four instances of this full adder module can be used to design a circuit that adds two four-bit numbers.
This type of circuit is called a ripple-carry adder, because of the way that the carry signals are passed from one
full adder to the next. Write Verilog code that implements this circuit, as described below. Be sure to use what
you learned about hierarchy in Lab 1.

Figure 2. A ripple-carry adder circuit.

Perform the following steps:

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Your schematic
should resemble Fig. 2d, though it should also contain module and signal labels, also showing external
connections to the switches and LEDs. Be prepared to explain it to the TA as part of your preparation.
(PRELAB)

2. Write a Verilog module for the full adder subcircuit and write a top-level Verilog module that instantiates
four instances of this full adder. You may not use the Verilog arithmetic operators (in particular +) in
your Verilog implementation of the full-adder. Doing so will earn you 0 marks for this part. (PRELAB)

3. Use switches SW7−4 and SW3−0 to represent the inputs A and B, respectively. Use SW8 for the carry-
in, cin, of the adder. Connect the outputs of the adder, cout and S, to the LEDs LEDR9 and LEDR3:0

respectively.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs. As always, demonstrate to the TA.

5



Part III

Using Parts I and II from this lab and the HEX decoder from Lab 1 Part III, you will implement a simple Arithmetic
Logic Unit (ALU). An ALU has two inputs and can perform multiple operations on the inputs such as addition,
subtraction, logical operations, etc. The output of the ALU is selected by function bits that specify the function to
be performed by the ALU. The easiest way to build an ALU is to implement all required functions and connect
the outputs of the functions to a multiplexer. Choose the output value for the ALU using the ALU function inputs
to drive the multiplexer select lines. The output of the ALU will be displayed on the LEDs and HEX displays.

Shown in the case statement below are the operations to be implemented in the ALU for each function value in
pseudo code format. The ALU has two 4-bit inputs, A and B and an 8-bit output, called ALUout[7:0]. Note that
in some cases, the output will not require the full 8 bits so do something reasonable with the extra bits, such as
making them 0 so that the value is still correct.

always @(*) // declare always block
begin

case (function) // start case statement
0: A + B using the adder from Part II of this Lab
1: A + B using the Verilog ‘+’ operator
2: A XOR B in the lower four bits of the output and A OR B in the upper four bits
3: Output 1 (8'b00000001) if at least 1 of the 8 bits in the two inputs is 1 using a single OR operation
4: Output 1 (8'b00000001) if all of the 8 bits in the two inputs are 1 using a single AND operation
5: Make the inputs appear at the output, with A in the most significant four bits and B in the least significant four bits.
default: . . . // default case, output 0

endcase
end

Note that in this part of the lab, you will need to learn about Verilog concatenation for the additions, sign extension,
and the Verilog reduction operations for ORing and ANDing multiple bits without typing out the operation for each
bit individually.

The A and B inputs connect to switches SW7−4 and SW3−0 respectively. Use KEY2−0 for the function inputs.
Display ALUout[7:0] in binary on LEDR7−0; have HEX0 and HEX2 display the values of B and A respectively
in hexadecimal and set HEX1 and HEX3 to 0. HEX4 and HEX5 should display ALUout[3:0] and ALUout[7:4]
respectively in hexadecimal.

Perform the following steps:

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Your schematic
should contain a block diagram of your design showing any design hierarchy. You should show the mul-
tiplexer that is implied by the case statement for your ALU as well as all inputs to this multiplexer. Also
show all connections to switches and LEDs. Be prepared to explain it to the TA as part of your preparation.
(PRELAB)

2. Write a Verilog module for the ALU including all inputs and outputs. (PRELAB)

3. Create a new Quartus II project for your circuit.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit. Show to TAs.

Notes:

• In your simulation, KEY3−0 are inverted. Remember that the DE2 board recognizes an unpressed pushbutton
as a value of 1 and a pressed pushbutton as a 0.

• Some boards have faulty buttons (for example, they might constantly flip values when pressed). If that
happens, use a switch instead of a key.

6



Take all your code with you, and remember all partners have to submit to Quercus individually..

7


