CSCB58 - Lab 1

Intro to Verilog

Learning Objectives

This lab will serve as an introduction to Verilog, and show you how to get Verligo code running on the DE2 board,
and use that code to manipulate switches and LEDs, as well as the 7-Segment displays.

Note that we may refer to signals as SWy7_o, i.e., with the subscripts, but when you write your Verilog, you
will need touse SW[0], SW[1], etc.

Marks

Your TA must record the marks on this page as you complete each section of the lab. It is your responsibility to
ensure that by the end of the lab, all work has been recorded appropriately.

Prelab /3
Part I (in-lab) /1
Part II (in-lab) /1
Part III (in-lab) /2

Clean work-space with all materials returned to their original state / 1

TOTAL /8

Preparation Before the Lab

For this lab, and all future labs, you will be asked to prepare schematics (not in Quartus) and Verilog code for your
prelab. The schematics should show the structure of your Verilog code, much like the schematics in Lab 0 showed
how your circuit should be built. Your Verilog code will consist of a number of modules and the schematic should
show how those modules are wired together, as well as the input and output ports of your circuit, i.e., connections
to switches, LEDs, 7-segment hex displays, etc. Think of modules as just complex gates. In addition, all port
names of the modules, wires and I/O ports should be clearly labeled in your schematics. Figure 2] below is an
example. Finally, your Verilog code should be well-commented.

DE2 Resources

You can find information and resources (such as user manual and software) for Altera DE2-115 board here:
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502.

The User Manual for the DE2 board can be downloaded from here:
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=China&No=
502&FID=cd9c/clfeaaz2467c58c9aadcc02131af

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=China&No=502&FID=cd9c7c1feaa2467c58c9aa4cc02131af
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=China&No=502&FID=cd9c7c1feaa2467c58c9aa4cc02131af

Drawing Schematics

Here are some CAD tools that you might fine useful to draw your logic circuits and schematics. These are just
suggestions. If you have another tool that you like to use, you are welcome to use that instead.

e TinyCAD: https://sourceforge.net/projects/tinycad/
e RFFlow: https://www.rff.com/index.php

e Logicly: https://logic.ly/demo/

https://sourceforge.net/projects/tinycad/
https://www.rff.com/index.php
https://logic.ly/demo/

Part I
Running a Verilog File (.v):

The DE2 board provides 18 toggle switches, called SWy7_, that can be used as inputs to a circuit, and 10 red
lights, called LEDRg_, that can be used to display output values.

A Verilog file for a 2-to-1 multiplexer, named mux.v, has already been provided to you. The top module mux
has 3 inputs. SW[O0] is the input O signal, SW[1] is the input 1 signal, and SW[9] is the select signal. The output
is displayed on LEDR][0].

module mux (SW, LEDR); // module name and port list

The top module, lab_1, is a very trivial example of a design hierarchy, as it instantiates a single mux2tol module.
In the more general case, any module can instantiate a number of interconnected modules. However, in any circuit
you build, there must be only one top-level module. The .port(connection) notation matches the port name from
the mux2tol module to a connection (e.g., port or internal wire) inside the mux top-level module. Note that every
instance has to have a unique name. In our example below we named our instance of the mux2tol module my_mux.

mux2tol my_mux (

.x(sSw[0]), // connect port SW[0] to port x
.y (SW[1]), // connect port SW[l] to port y
.s(SW[9]), // connect port SW[9] to port s
.m(LEDR[O0]) // connect port LEDR[0] to port m

)i

Figure [T] shows the symbol for a 2-to-1 multiplexer. A multiplexer is a device that uses a select signal to select
which one of multiple inputs should appear on the output of the device. In our example below, input s will control
which of the inputs x and y will appear on the output m. If s is 0, x will appear, while if s is 1, y will.

s

Figure 1: Symbol for a 2-to-1 multiplexer

The boolean expression for a 2-to-1 multiplexerism = xs'+ ys, and one way you can express this in Verilog
is the following:

assignm =x & s | y & s;

The following table describes the bitwise Verilog operators.

Operator Description

| bitwise OR

& bitwise AND

~ bitwise negation (NOT)
- bitwise XOR

Perform the following steps to run your verilog file on the DE2 board (you may want to keep this page handy
until you get comfortable with this series of steps):

1. Open Quartus
2. Run the new project wizard

(a) Choose a name and working directory
* Note that your project must be named 1ab_1, as that is the name of the top-level module
(b) Choose “Empty Project”
(c) Add the file mux . v to your project
(d) Choose the appropriate device (Cyclone IV E — EPACE115F29C7)

(e) Make sure your simulation is using ModelSim-Altera and your format is set to Verilog HDL)
3. Map your variable names to the board pin assignments

* To save you doing this all the time, we have supplied a default mapping in the file de2 . sgf

» Simply choose Assignments — Import Assignments, and it should map all of the standard variable
names to the appropriate pins

4. Run synthesis on your code
* Processing — Start — Start Analysis & Synthesis

5. Compile the project
* Project — Start Compilation

6. Power on your DE2 board
7. Run the code on the DE2 board

(a) Tools — Programmer
(b) Make sure "Hardware Setup” is set to "USB-Blaster”
(c) Add the output file from your compilation (Add File — Find your .sof file in your output folder)
(d) Click “Start”
Test your code on the DE2 board. Now, try changing the switches/LEDs that the code will use to make sure

you really understand what the verilog file is doing. Try making it work with switch 17 being s, and use one of
the green LEDs for output. Show your work to the TA.

Part 11

Start with the code given in Part I and modify the design to make it a 4-to-1 multiplexer. You must use multiple
instantiations of the mux2tol module given to you in Part I. This is known as hierarchical design and is a good
practice especially for larger designs where the Verilog code you write can become more difficult to debug.

To complete this section, you will need to use the wire declaration to create wires that can be used to connect
the multiple blocks together.

wire Connection; // creates a wire called Connection

The wire created above is called Connection and it can be used to connect the output of a module to the input of a
module, like the wires you drew in Lab 0 to connect the output of one gate to the input of another gate. Figure
shows a schematic of two modules using the wire Connection. You may also use Connection as input to other
logical expressions within the module where the wire is defined.

module block1(in1, out1); module block2(in2, out2);

. Connection .
SW[0] ——] in1 out1 in2 out2

LEDRI5]

Figure 2: Using the wire Connection to make a connection between two modules

The following code fragment corresponds to Figure[2} It creates instances of modules blockl and block2, named
BI and B2, respectively. The wire Connection is used to wire the module instances together.

blockl Bl (

.inl (SW[0]), // assign port SW[0] to port inl

.outl (Connection) // assign wire Connection to port outl
)

block2 B2 (

.in2 (Connection), // assign wire Connection to port in2

.out2 (LEDR[5]) // assign port LEDR[5] to port out2
)

Another way to make a connection is to use the assign statement. For example, if we wanted to connect the wire
called Connection to LEDR,, we do the following:

assign LEDR[0O] = Connection; // joins wire Connection to LEDR[O0]

Now construct a module for the 4-to-1 multiplexer shown in Figure 3| with the truth table shown in Table|l|using
the wire construct and multiple instances of the mux2tol module.

S So
u —1 00
V =— 01
m
w — 10
X =— 11

Figure 3: Symbol for a 4-to-1 multiplexer

Table 1: Truth table for a 4-to-1 multiplexer

Perform the following steps:

1. Draw a schematic (not in Quartus) showing how you will connect the mux2tol modules to build the 4-to-1
multiplexer. Be prepared to explain it to the TA as part of your prelab. The schematic should reflect how
you are going to write your Verilog code. (PRELAB)

2. Create a new Quartus II project for your circuit and write the Verilog code.

3. Include your Verilog file for the circuit in your project. Use switches SWq_g on the DE2 board as the 2-bit
s input, switches SW3_ as the inputs. Connect the output to LEDRj. Do not forget that you will need the
de2.gsf file to define how the switches and LEDs connect to the pins.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Once done, show your work to your TA

Part 111

In this part of the lab, you are to design a decoder for the 7-segment HEX display as shown in Figure[d] The output
of the HEX display is determined by the value at the input of the decoder as shown in Table[2] We call this a HEX
display because it displays hexadecimal digits.

Remember that in order to light up a segment of a 7-segment display, its value must be set low. e.g., in order
to draw a 1 on the Oth display, HEX0; and HEX0, should be set to 0, while the others (HEX, and HEX>_¢) should
be setto 1.

Debugging Strategy: Before diving into the full Part III implementation, you may find it helpful to start by creating
a very simple Verilog module which turns on segment O of the 7-segment display, i.e., pin HEX0,, based on the
input from SWy.

Perform the following steps:

1. Create boolean expressions for each segment of the 7 segment display. Use k-maps (Karnaugh maps) to
simplify them. (PRELAB)

2. Draw a schematic of the circuit you want to build and be prepared to explain it to the TA as part of your
prelab. The schematic should reflect how you are going to write your Verilog code. You need not show every
single gate in your design but you should show the overall circuit structure using hierarchy. (PRELAB)

3. Create a new Quartus II project for your circuit and write the Verilog code.

Table 2: Truth table for HEX decoder

c3cocico | Character

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TMmae QT >0 bW —O

4. Create a Verilog module for the 7-segment decoder. Connect the c3cacicy inputs to switches SW5_, and
connect the outputs of the decoder to the HEXO display on the DE2 board. The segments in this display are
called HEX0y, HEXO,, . . ., HEX0g. You should declare the 7-bit port like this in your Verilog code:

output [6:0]

so that the names of these outputs match the corresponding names in the DE2 User Manual and the pin

assignment de2 . gsf file.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the

0000 —
[]

1111 —

Display HEX value 0

Display HEX value F

SWs3_o switches and observing the 7-segment display.

Show your work to the TA.

Finishing Up

HEXO;

Figure 4: HEX decoder

1. Zip the files and take them with you. You may need it in future labs!

2. Clean up you work space and return all materials.

3. Don’t forget to upload to Quercus.

