$\operatorname{CSC}\operatorname{B58}$ Winter 2018 Final Exam	Student Number:		 1	 	 	 _B
Duration — 2 hours and 50 minutes	UTORide					
Aids allowed: none	e i olidu.					

Last Name:

First Name:

Question 0. [1 MARK]

Read and follow all instructions on this page, and fill in all fields appropriately.

Do **not** turn this page until you have received the signal to start. (Please fill out the identification section above, **write your name on the back of the test**, and read the instructions below.) Good Luck!

This exam is double-sided, and consists of 5 questions on 18 pages (including	
have all pages.	# 0:/ 1
• If you use any space for rough work, indicate clearly what you want	# 1:/ 8
marked.	# 2:/ 6
• Do not remove any pages from the exam booklet.	# 3:/ 5
• Read all instructions before completing any questions	# 4:/20
• Write your name and student number on the back of the last page	# 5:/30
• You may leave any question blank except for the words "I don't know" to receive 10% (rounded up to the nearest half-integer) for that question	TOTAL:/70

Question 1. [8 MARKS]

Answer the following questions in the space provided. Your answers should be as simple and concise as possible.

Part (a) [2 MARKS]

What are semiconductors, and why are they so important for modern computer science?

Part (b) [2 MARKS]

If the number of 1s and 0s in a truth table is roughly equal, we tend to prefer a SOM rather than a POM equation. Why would this be?

Part (c) [2 MARKS]

In assembly without delayed loads, you may sometimes see code that has NOOP (instructions which don't perform any operations) following lw instructions. Why is this?

Part (d) [2 MARKS]

Draw a diagram (with source, ground and transistors) of a circuit with the following truth table. Your circuit should be as simple as possible.

Α	OUT
0	1
1	?

Question 2. [6 MARKS]

Answer the following questions in the space provided.

Part (a) [2 MARKS]

How would you represent 35d in binary? Show your answer for both signed and unsigned numbers.

How would you represent -35d in binary? Show your answer for both signed and unsigned numbers.

Part (b) [2 MARKS]

Calculate 35d - 51d by converting both numbers to binary and using binary subtraction. Show your work.

Part (c) [2 MARKS]

Calculate 9990000099000d * 3. Using the technique shown in class, you do not need to convert to binary, but you do need to show your work.

Question 3. [5 MARKS]

Given only HA and FA gates, along with the standard primitive gates (AND, OR, NAND, NOR, XOR, and NOT). Construct a 4 bit adder-subtractor.

Note: All blocks shown are D-latches

Question 4. [20 MARKS]

Complete the timing diagram for the gates shown on the opposite page.

A										
В	_		 	4	 					
			 				 		time	
T1	 		 	 		 	 		 	
T2	 		 			 	 		 	
			 				 		 [[
X			 	 			 			
 V				 - 		 	 	5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 	
T			 				 			

Question 5. [30 Marks]

For this question, no marks will be given for code without proper comments. If your code does not work, partial marks may be awarded for a well designed flow chart.

Part (a) [10 MARKS]

Write an assembly function called max_min that takes the address of a list as a parameter and uses a loop (not recursion) to find the maximum and minimum values in that list.

Part (b) [10 MARKS]

Write an assembly function called **rec_max_min** that takes the address of a list as a parameter and uses recursion to find the maximum and minimum values in that list.

Part (c) [10 MARKS]

Write some global assembly code that declares a list of integers (assume they are filled with data by some other process), calls max_min and rec_max_min on the list, and prints SUCCESS if the two functions return the same values and FAILURE otherwise.

MIPS Reference Sheet

You may remove this sheet, nothing on this page will be marked

Arithmetic Instructions							
Instruction	Opcode/Function	Syntax	Operation				
add	100000	\$d, \$s, \$t	\$d = \$s + \$t				
addu	100001	\$d, \$s, \$t	\$d = \$s + \$t				
addi	001000	\$t, \$s, i	\$t = \$s + SE(i)				
addiu	001001	\$t, \$s, i	\$t = \$s + SE(i)				
div	011010	\$s, \$t	lo = \$s / \$t; hi = \$s % \$t				
divu	011011	\$s, \$t	lo = \$s / \$t; hi = \$s % \$t				
mult	011000	\$s, \$t	hi:lo = \$s * \$t				
multu	011001	\$s, \$t	hi:lo = \$s * \$t				
sub	100010	\$d, \$s, \$t	\$d = \$s - \$t				
subu	100011	\$d, \$s, \$t	\$d = \$s - \$t				
Instruction	Ducode/Function	Syntax	Operation				
and	100100	ed eg et	$\varphi_d = \varphi_a + \varphi_+$				
andi	001100	φα, φ δ , φι Φ+ Φα i	$\varphi \mathbf{u} = \varphi \mathbf{s} \& \varphi \mathbf{c}$ $\varphi \mathbf{t} = \varphi \mathbf{s} & \nabla \mathbf{F}(\mathbf{i})$				
nor	100111	ψ , ψ s, \perp	$\psi c = \psi S \ll \Delta E(1)$ $\varphi d = \sim (\varphi_{2} + \varphi_{+})$				
	100111	φα, φδ, φι φα φα φ+	$\varphi d = (\varphi S \varphi c)$				
ori	001101	φα, φδ, φι Φ+ Φα ÷	$\varphi \mathbf{u} = \varphi \mathbf{S} + \varphi \mathbf{c}$ $\Phi \mathbf{t} = \Phi \mathbf{c} + \nabla \mathbf{E}(\mathbf{i})$				
VOLT	1001101	φι, φδ, Ι φλ φλ φ+	$\varphi_{c} = \varphi_{S} + \Sigma_{E}(1)$				
xor	100110	φα, φε, φι Φ+ Φα i	$\varphi \alpha - \varphi S \varphi \zeta$ $\varphi + - \varphi \alpha \gamma \nabla \Gamma(z)$				
XOLI	001110	Φι, ΦΒ, Ι	$\mathfrak{F} \mathfrak{L} = \mathfrak{F} \mathfrak{S} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} \mathfrak{L} L$				
	SI	nift Instructions					
Instruction	Opcode/Function	Syntax	Operation				
sll	000000	\$d, \$t, a	\$d = \$t << a				
sllv	000100	\$d, \$t, \$s	\$d = \$t << \$s				
sra	000011	\$d, \$t, a	\$d = \$t >> a				
srav	000111	\$d, \$t, \$s	\$d = \$t >> \$s				
srl	000010	\$d, \$t, a	\$d = \$t >>> a				
srlv	000110	\$d, \$t, \$s	\$d = \$t >>> \$s				
	Data M	ovement Instru	ctions				
Instruction	Opcode/Function	Syntax	Operation				
mfhi	010000	\$d	d = hi				
mflo	010010	\$d	\$d = 10				
mthi	010001	\$s	hi = \$s				
mtlo	010011	\$s	lo = \$s				
		• • · · · · ·					
Branch Instructions							
Instruction	Upcode/Function	Syntax	Uperation				
beq	000100	\$\$, \$t, label	11 (\$s == \$t) pc <- label				
bgtz	000111	\$\$, label	11 (\$s > 0) pc <- label				
blez	000110	\$s, label	if (\$s <= 0) pc <- label				
bne	000101	\$s, \$t, label	if (\$s != \$t) pc <- label				

_

Jump Instructions							
Instruction	Opcode/Function	Syntax	Operation				
j	000010	label	pc <- label				
jal	000011	label	\$ra = pc; pc <- label				
jalr	001001	\$s	\$ra = pc; pc = \$s				
jr	001000	\$s	pc = \$s				
	С	omparison In	nstructions				
Instruction	Opcode/Function	Syntax	Operation				
slt	101010	\$d, \$s, \$t	\$d = (\$s < \$t)				
sltu	101001	\$d, \$s, \$t	\$d = (\$s < \$t)				
slti	001010	\$t, \$s, i	\$t = (\$s < SE(i))				
sltiu	001001	\$t, \$s, i	\$t = (\$s < SE(i))				
Memory Instructions							
Instruction	Opcode/Function	Syntax	Operation				
lb	100000	\$t, i (\$s)	\$t = SE (MEM [\$s + i]:1)				
lbu	100100	\$t, i (\$s)	\$t = ZE (MEM [\$s + i]:1)				
lh	100001	\$t, i (\$s)	\$t = SE (MEM [\$s + i]:2)				
lhu	100101	\$t, i (\$s)	\$t = ZE (MEM [\$s + i]:2)				
lw	100011	\$t, i (\$s)	\$t = MEM [\$s + i]:4				
sb	101000	\$t, i (\$s)	MEM [\$s + i]:1 = LB (\$t)				
sh	101001	\$t, i (\$s)	MEM [\$s + i]:2 = LH (\$t)				
sw	101011	\$t, i (\$s)	MEM [\$s + i]:4 = \$t				
Pseudo Instructions							
Instruction	Opcode/Function	Syntax	Operation				
la	N/A	\$t, label	<pre>\$t = SE (MEM [label]:1)</pre>				
li	N/A	\$t, i	\$t = i				
syscall	N/A		Call system trap, trapcode is in \$v0				
Trap Codes							
Service	Trap Code Inpu	e Input/Output					
$print_int$	1 \$a0	\$a0 is int to print					
print_string	4 \$a0	\$a0 is address of ASCIIZ string to print					
$read_int$	5 \$a0	\$a0 is int read					
read_string	8 \$a0	\$a0 is address of buffer, \$a1 is buffer size in bytes					
exit	10						