
UNIVERSITY OF TORONTO
Faculty of Arts and Science

Summer 2016 Final Examination
CSC258H1Y

Duration — 3 hours
Aids allowed: none

Student Number:

UTORid:

Last Name: First Name:

Question 0. [1 mark]

Read and follow all instructions on this page, and fill in all fields.

Do not turn this page until you have received the signal to start.

(Please fill out the identification section above and read the instructions below.)
Good Luck!

This midterm is double-sided, and consists of 9 questions on 16 pages (in-
cluding this one). When you receive the signal to start, please make sure
that you have all pages.

• If you use any space for rough work, indicate clearly what you want
marked.

• Write “Hi Brian” in the bottom left corner of this page

• In lieu of answering, you may write “I don’t know” on any question to
receive partial credit (20% rounded up to the nearest half mark) for the
question. Answers which do not demonstrate a sensible understanding
of the question, will not receive partial marks. In other words, don’t
guess if you don’t know.

• Do not remove any pages from the exam booklet.

0: / 1

1: /10

2: / 6

3: / 5

4: /10

5: /15

6: / 3

TOTAL: /50

Total Pages = 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 2 of 16

CSC258H1Y Final Examination Summer 2016

Question 1. [10 marks]

Part (a) [2 marks]

In the space below, provide the truth table for the following circuit:

Part (b) [3 marks]

Using only the circuit above (you can use a block diagram to represent the circuit) and standard logic
gates (and/or/not/xor/nand/nor), draw a counter that counts the sequence 0, 1, 2, 3, 0, 1, 2, 3, ...

Page 3 of 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 4 of 16

CSC258H1Y Final Examination Summer 2016

Part (c) [3 marks]

Using only the circuit from part a and standard logic gates (and/or/not/xor/nand/nor), draw a “counter”
that counts the sequence 3, 2, 1, 3, 2, 1, 3, 2, 1, ...

Part (d) [2 marks]

Using only the circuit from part a and standard logic gates (and/or/not/xor/nand/nor), draw a “counter”
that counts the sequence 3, 4, 3, 4, 3, 4, ...

Page 5 of 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 6 of 16

CSC258H1Y Final Examination Summer 2016

Question 2. [6 marks]

Complete the timing diagram below

Page 7 of 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 8 of 16

CSC258H1Y Final Examination Summer 2016

Question 3. [5 marks]

Use booth’s algorithm to calculate -15 * 10. Show your work.

Page 9 of 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 10 of 16

CSC258H1Y Final Examination Summer 2016

Question 4. [10 marks]

.data

A: .asciiz "I love CSC258!!"

B: .asciiz "I like assembly"

C: .asciiz "XXXXXXXXXXXXXXX"

.text

main: add $t0, $zero, $zero

addi $t1, $zero, 40

la $t7, A

la $t8, B

la $t9, C

label1: add $t4, $t7, $t0

add $t5, $t8, $t0

add $t6, $t9, $t0

lb $s4, 0($t4)

lb $s5, 0($t5)

beq $s4, $s5, label2

sb $s4, 0($t6)

label2: addi $t0, $t0, 1

bne $t0, $t1, label1

li $v0, 4

la $a0, C

syscall

end:

Part (a) [6 marks]

Provide comments for the code above

Part (b) [4 marks]

What is printed to the console when this code is run?

Page 11 of 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 12 of 16

CSC258H1Y Final Examination Summer 2016

Question 5. [15 marks]

Part (a) [8 marks]

In the space below, write an assembly function IS MULT which takes two parameters a and b, and returns 1
i↵ a is a multiple of b, otherwise it returns a 0. To make things interesting, you may not use multiplication
or division. Remember that no marks will be given for uncommented code.

Part (b) [7 marks]

In the space below, write an assembly program which allocates two arrays A and B of 10 integers each, and
then uses your function above (assuming it is in the same file) to fill a boolean array C, using the logic
C[i] = IS MULT(A[i], B[i]).

Page 13 of 16

CSC258H1Y Final Examination Summer 2016

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of

your work that you want us to mark.]

Page 14 of 16

MIPS Reference

Machine Encoding Aids

Key Instruction Syntax

o/f instruction/function opcodes Encoding Syntax Template
s/t/d first/second/third register

Register

ArithLog f $d, $s, $t
a/i shift amount/immediate DivMult f $s, $t

Shift f $d, $t, a
Instruction Encoding Formats ShiftV f $d, $t, $s
Register 000000ss sssttttt dddddaaa aaffffff JumpR f $s
Immediate ooooooss sssttttt iiiiiiii iiiiiiii MoveFrom f $d
Jump ooooooii iiiiiiii iiiiiiii iiiiiiii MoveTo f $s

Immediate

ArithLogI o $t, $s, i
LoadI o $t, immed32
Branch o $s, $t, label
BranchZ o $s, label
LoadStore o $t, i($s)

Jump
Jump o label
Trap o i

Instruction Reference

Arithmetic and Logical Instructions

Instruction Operation Opcode or Syntax Comments
Function

add $d, $s, $t $d = $s + $t 100000 ArithLog
addu $d, $s, $t $d = $s + $t 100001 ArithLog
addi $t, $s, i $t = $s + i 001000 ArithLogI i is sign-extended
addiu $t, $s, i $t = $s + i 001001 ArithLogI i is sign-extended
and $d, $s, $t $d = $s & $t 100100 ArithLog
andi $t, $s, i $t = $s & i 001100 ArithLogI i is zero-extended
div $s, $t lo = $s / $t; hi = $s % $t 011010 DivMult
divu $s, $t lo = $s / $t; hi = $s % $t 011011 DivMult
mult $s, $t hi:lo = $s * $t 011000 DivMult
multu $s, $t hi:lo = $s * $t 011001 DivMult
nor $d, $s, $t $d = ˜($s | $t) 100111 ArithLog
or $d, $s, $t $d = $s | $t 100101 ArithLog
ori $t, $s, i $t = $s | i 001101 ArithLogI i is zero-extended
sll $d, $t, a $d = $t << a 000000 Shift Zero is shifted in
sllv $d, $t, $s $d = $t << $s 000100 ShiftV Zero is shifted in
sra $d, $t, a $d = $t >> a 000011 Shift Sign bit is shifted in
srav $d, $t, $s $d = $t >> $s 000111 ShiftV Sign bit is shifted in
srl $d, $t, a $d = $t >> a 000010 Shift Zero is shifted in
srlv $d, $t, $s $d = $t >> $s 000110 ShiftV Zero is shifted in
sub $d, $s, $t $d = $s - $t 100010 ArithLog
subu $d, $s, $t $d = $s - $t 100011 ArithLog
xor $d, $s, $t $d = $s ˆ $t 100110 ArithLog
xori $d, $s, i $d = $s ˆ i 001110 ArithLogI i is zero-extended

Movement Instructions

Instruction Operation Opcode or Syntax Comments
Function

lhi $t, i $t = i << 16 011001 LoadI i is zero-extended
llo $t, i $t = i 011000 LoadI i is zero-extended
mfhi $d $d = hi 010000 MoveFrom
mflo $d $d = lo 010010 MoveFrom
mthi $s hi = $s 010001 MoveTo
mtlo $s lo = $s 010011 MoveTo

Comparison Instructions

Instruction Operation Opcode or Syntax Comments
Function

slt $d, $s, $t $d = $s < $t 101010 ArithLog
sltu $d, $s, $t $d = $s < $t 101001 ArithLog
slti $t, $s, i $d = $s < i 001010 ArithLogI i is sign-extended
sltiu $t, $s, i $d = $s < i 001001 ArithLogI i is sign-extended

Branch and Jump Instructions

Instruction Operation Opcode or Syntax Comments
Function

beq $s, $t, label if ($s == $t) pc += i << 2 000100 Branch label is a line reference in the code
bgtz $s, label if ($s > 0) pc += i << 2 000111 BranchZ label is a line reference in the code
blez $s, label if ($s <= 0) pc += i << 2 000110 BranchZ label is a line reference in the code
bne $s, $t, label if ($s != $t) pc += i << 2 000101 Branch label is a line reference in the code
j label pc += i << 2 000010 Jump label is a line reference in the code
jal label $ra = pc; pc += i << 2 000011 Jump label is a line reference in the code
jalr $s $ra = pc; pc = $s 001001 JumpR
jr $s pc = $s 001000 JumpR

Memory Instructions

Instruction Operation Opcode or Syntax Comments
Function

lb $t, i($s) $t = MEM[$s + i] 100000 LoadStore Sign-extends the loaded byte
lbu $t, i($s) $t = MEM[$s + i] 100100 LoadStore Zero-extends the loaded byte
lh $t, i($s) $t = MEM[$s + i] 100001 LoadStore Sign-extends the loaded bytes
lhu $t, i($s) $t = MEM[$s + i] 100101 LoadStore Zero-extends the loaded bytes
lw $t, i($s) $t = MEM[$s + i] 100011 LoadStore
sb $t, i($s) MEM[$s + i] = $t 101000 LoadStore Lowest order byte is stored
sh $t, i($s) MEM[$s + i] = $t 101001 LoadStore 2 lowest order bytes are stored
sw $t, i($s) MEM[$s + i] = $t 101011 LoadStore

Exception and Interrupt Instructions

Instruction Operation Opcode or Syntax Comments
Function

trap i Exception 0011010 Trap i is a trap code; implements syscall

