
Admin Object-Orientation Objects Self Break Private Variables init & str

CSCA08 FALL 2017
WEEK 8 - INTRO TO OOP

Brian Harrington & Marzieh Ahmadzadeh

University of Toronto Scarborough

October 30 - November 3, 2017



Admin Object-Orientation Objects Self Break Private Variables init & str

ADMIN

• TT2
• Details on course website
• Covers everything up to and including dictionaries (week 7

lecture, week 8 tutorials + inverted)
• Beware the code mangler



Admin Object-Orientation Objects Self Break Private Variables init & str

DEFINING OUR OWN TYPES

• We’ve seen a bunch of types so far (int, float, list,
dict...).

• Now it’s time to define our own



Admin Object-Orientation Objects Self Break Private Variables init & str

OBJECT ORIENTATION: A NEW PARADIGM

• Until now: Functions were the focus
• my_function(data): One global function that gets data

passed to it
• Object Oriented Approach:

• my_obect.method(data): The object has its own
methods and data



Admin Object-Orientation Objects Self Break Private Variables init & str

SOME TERMINOLOGY

• Class: The type of an object
• Object: An instance of a class
• Method: Like a function, but belongs to a class
• We’ve already seen this:

• my_string = str(12.57)
• my_string.ljust(10)
• my_string is an object, of the str class, and we called

string’s ljust method on it



Admin Object-Orientation Objects Self Break Private Variables init & str

CREATING OBJECTS

• Create a class: class ClassName():
• (We’ll see what the brackets are for later)
• CamelCase (not pot_hole_case)

• define a method def method_name(self)
• Looks very similar to defining a function
• Indented inside the class
• We’ll see what the self does in a minute

• can now create a new object of type ClassName
• my_object = ClassName()

• our new object can now access the methods we defined
• my_object.method_name()



Admin Object-Orientation Objects Self Break Private Variables init & str

SELF

• Every method (including the built in ones) gets implicitly
passed a copy of the object upon which it was called

• We don’t include it in the method call, but we do in the
method definition

• This allows a method to access the object on which it was
called

• We normally call this copy of our object self
• Behind the scenes: my_obj.method() is really just an

alias of Class.method(my_obj)



Admin Object-Orientation Objects Self Break Private Variables init & str

BREAK

WARNING: Scary Halloween Image Ahead



Admin Object-Orientation Objects Self Break Private Variables init & str

BREAK



Admin Object-Orientation Objects Self Break Private Variables init & str

WHAT’S WITH ALL THE UNDERSCORES?

• Already saw, we can do: my_object.variable
• This is bad. Why?

• External code relying on internals of class
• We should be able to change internals without worrying

about breaking external code
• Like the difference between internal/external documentation
• This will be a major topic in A48

• using underscores = people unlikely to guess variable
names

• Really: Just a way of saying “Hands off my variables"
• Doesn’t actually stop external code, if they know the

variable name, they can still access/change it.
• Security through obscurity/convention



Admin Object-Orientation Objects Self Break Private Variables init & str

BUILT-IN METHODS

• __init__
• Initialize: this is known as a constructor method
• Defines the code that runs when we first create a new

object of this type
• Usually used to set up the default parameters

• __str__
• Return what you want to output when an object of this class

is cast to a string (or printed)


	Admin
	Object-Orientation
	Objects
	Self
	Break
	Private Variables
	init & str

