
UML Encapsulation & Abstraction Break ADTs

CSCA08 FALL 2017
WEEK 10 - ENCAPSULATION & ABSTRACTION, OOP DESIGN

Brian Harrington & Marzieh Ahmadzadeh

University of Toronto Scarborough

November 13 - 17, 2017



UML Encapsulation & Abstraction Break ADTs

UML

• Variables
• Underscore in front of name means private
• Need to show type of all variables
• Include variables in the class where they can be found
• Methods
• Underscore in front of name means private (helper)
• Need to show type contract of all methods
• Include methods in the class where they can be found
• Include __init__, but (usually) not other system methods
• Don’t need to show all getter/setter methods for private

variables (assumed they’re present)
• Classes
• Need to show all classes that you will write (don’t show

built-in/imported)
• Show relationships (with name) + cardinality between

classes



UML Encapsulation & Abstraction Break ADTs

ENCAPSULATION & ABSTRACTION

• Encapsulation
• Grouping together data and functionality into a single class
• Work with high level objects (Events, People, Buildings)

instead of low-level details (ints, floats, dicts)
• Simplify

• Abstractions
• Hiding implementation details from outside users/code
• Makes it easier to change code in the future
• Reduce later dependencies
• Simultaneous development



UML Encapsulation & Abstraction Break ADTs

BREAK



UML Encapsulation & Abstraction Break ADTs

ABSTRACT DATA TYPES

• Data Type: information stored and operations that can be
performed

• We’ve seen lots of these: str, float, list, dict, etc

• Abstract Data Type: Independent of the implementation



UML Encapsulation & Abstraction Break ADTs

WHY ADTS?

• User doesn’t care how it works
• Other developers shouldn’t [need to] care about

implementation details
• Examples:

• dictionaries
• lists
• most things you interact with in the real world


	UML
	Encapsulation & Abstraction
	Break
	ADTs

