
CSCA08 Fall 2015 Final Exam
Duration — 180 minutes

Aids allowed: none

Student Number:

Markus Login:

Last Name: First Name:

Do not turn this page until you have received the signal to start.

This exam consists of 5 questions on 16 pages (including this one). When you
receive the signal to start, please make sure that your copy is complete.
Proper documentation is required for all functions and code blocks. If you use
any space for rough work, indicate clearly what you want marked. Any pages
not attached to this cover page will not be marked. Please read all questions
thoroughly before starting on any work.

The University of Toronto’s Code of Behaviour on Academic Matters applies to
all University of Toronto Scarborough students. The Code prohibits all forms of
academic dishonesty including, but not limited to, cheating, plagiarism, and the use
of unauthorized aids. Students violating the Code may be subject to penalties up
to and including suspension or expulsion from the University.

1: / 5

2: / 5

3: /10

4: /10

5: /20

TOTAL: /50

Total Pages = 16 Page 1 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 2 of 16 cont’d. . .

CSC A08 Fall 2015

Question 1. [5 marks]

Write the output of the following code in the space provided.
class GrandParent():

def __init__(self, a, b):

self._a = a

self._b = b

def blah(self):

return "GP:" + self._a + self._b

class Parent1(GrandParent):

def __init__(self, a, b, c):

GrandParent.__init__(self, a, b)

self._c = c

def blah(self):

return ("P1:" + self._a +

self._b + self._c)

class Parent2(GrandParent):

def __init__(self, a, b, c):

self._a = b

self._b = a

self._c = self.blah()

class Child1(Parent2):

def __init__(self, a, b, c, d):

Parent1.__init__(self, a, b, c)

self._d = d

class Child2(Parent1):

def __init__(self, a, b, c, d):

Child1.__init__(self, b, c, d, a)

Parent2.__init__(self, a, b, c)

def blah(self):

return ("C2: " + self._a + self._b

+ self._c + self._d)

gp = GrandParent("A", "B")

print(gp.blah())

p1 = Parent1("A", "B", "C")

print(p1.blah())

p2 = Parent2("A", "B", "C")

print(p2.blah())

c1 = Child1("A", "B", "C", "D")

print(c1.blah())

c2 = Child2("A", "B", "C", "D")

print(c2.blah())

Student #: Page 3 of 16 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 4 of 16 cont’d. . .

CSC A08 Fall 2015

Question 2. [5 marks]

Write the output of the following code in the space provided. Assume that dictionaries print their keys in
alphabetical/numerical order

s1 = "CSCA08 2015"

s2 = "INTRO TO COMPUTER SCIENCE"

d1 = {}

d2 = {}

i = 0

j = len(s2) - 1

while(i < j):

d1[s1[i]] = s2[j]

if(s1[i] in s2):

d2[i] = s2[j-i]

i += 1

j -= i

print(d1)

print(d2)

Student #: Page 5 of 16 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 6 of 16 cont’d. . .

CSC A08 Fall 2015

Question 3. [10 marks]

Write the output of the following code in the space provided 1.

def func1(list1):

list1[0] = "A"

print(list1)

def func2(list1, list2):

list1[0] = list2[0]

list3 = list1[1:3]

list3[0] = "B"

list2[0] = list3[0]

print(list1, list2, list3)

def func3(list1, list2):

list3 = list1[:]

list1[0] = list2

list1[0][0] = "C"

list2[1] = "D"

print(list1, list2, list3)

list1 = [1, 2, 3]

list2 = [4, 5, 6]

func1(list1)

func2(list1,list2)

list1 = [1, 2, 3]

list2 = [4, 5, 6]

func3(list1, list2)

list1 = [[1, 2], 3]

list2 = [[4], [5, [6]]]

func3(list1, list2)

1Boy, this sure does look familiar... at least this time we can’t mis-read any lists as integers. Good thing we learn from
our mistakes!

Student #: Page 7 of 16 cont’d. . .

CSC A08 Fall 2015

MANGLED CODE:

BICYCLE_RIDERS = 1

BICYCLE_WHEELS = 2

CAR_WHEELS = 4

SPORTS_CAR_SEATS=2

SPORTS_CAR_MAX_SPEED=300

SPORTS_CAR_MAX_SPEED

SPORTS_CAR_SEATS

BICYCLE_RIDERS

BICYCLE_WHEELS

CAR_WHEELS

Bicycle

Car

SportsCar

Vehicle

max_passengers

max_speed

num_seats

num_wheels

max_speed

self

self._max_passengers = max_passengers

self._max_passengers = num_seats

self._max_passengers = SPORTS_CAR_SEATS

self._max_passengers = BICYCLE_RIDERS

self._num_wheels = num_wheels

self._num_wheels = CAR_WHEELS

self._num_wheels = BICYCLE_WHEELS

self._max_speed = max_speed

self._max_speed = SPORTS_CAR_MAX_SPEED

Vehicle.__init__()

Car.__init__()

Bicycle.__init__()

SportsCar.__init__()

Student #: Page 8 of 16 cont’d. . .

CSC A08 Fall 2015

Question 4. [10 marks]

Nick was building some classes to represent various modes of transportation. He managed to get as far
as writing all of the initializers, but then he stepped out of his office for just a minute... and guess who
struck? The Code Mangler! This time, the code mangler didn’t just swap the lines of code around,
he/she took out the various parameters, but left the structure intact. Duplicate lines were deleted, and it
looks as though a few extra lines of code may have even been placed in there to further confuse matters.
Nick has copies of the DocStrings(somewhere), so no need to re-write those. Please re-assemble Nick’s
code in the space below.

class Vehicle():

def __init__():

class Car():

def __init__():

class SportsCar():

def __init__():

class Bicycle():

def __init__():

Student #: Page 9 of 16 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 10 of 16 cont’d. . .

CSC A08 Fall 2015

Question 5. [20 marks]

Santa needs help managing all of his operations at the North Pole. Your job is to write a program to
simulate giving presents to all the good children. You will read 2 files, ’naughty.csv’ and ’nice.csv’. The
nice file contains records in the form of name, present, where name is the name of a child and present is
the present that they want. The naughty file contains records of the form name, infraction, where name
is the child’s name and infraction is how they got on the naughty list. Santa should only give presents to
the children who aren’t on the naughty list. Santa’s elves (interesting fact: all elves are named “Elife the
Elf”, and are eternally 6 years old) make the presents and put them into his sack, and Santa can then get
the presents from his sack to give to the children.

Santa wants you to write a function called give presents, that takes in a set of children, a sack of
presents, and an elf who knows the info for Santa’s naughty list, and gives presents to the children. When
printed, children should say what they wanted for christmas, and what they got (or if they didn’t get
anything, they’ll say they didn’t get anything). You may assume that all children have unique names. You
should then write some global code with a bunch of assert statements (they don’t need to be inside proper
UnitTests, just bare assertEqual statements will suffice) to test the function. If all goes well, Santa may
want to add other features in future, so you should build all of your code in a way that it will be easy to
expand upon later, and use good OOP principles to help your code interface with Santa’s other systems.

Student #: Page 11 of 16 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 12 of 16 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 13 of 16 cont’d. . .

CSC A08 Fall 2015

[Use the space below for rough work. This page will not be marked unless you clearly indicate the part of
your work that you want us to mark.]

Student #: Page 14 of 16 cont’d. . .

Short Python function/method descriptions:
You may tear this page off, but if you do so, you must not include any work on it (front or back) that you wish to
have marked.

__builtins__:

abs(number) -> number

Return the absolute value of the given number.

max(a, b, c, ...) -> value

With two or more arguments, return the largest argument.

min(a, b, c, ...) -> value

With two or more arguments, return the smallest argument.

isinstance(object, class-or-type-or-tuple) -> bool

Return whether an object is an instance of a class or of a subclass thereof.

With a type as second argument, return whether that is the object's type.

int(x) -> int

Convert a string or number to an integer, if possible. A floating point argument

will be truncated towards zero.

str(x) -> str

Convert an object into a string representation.

str:

S.count(sub[, start[, end]]) -> int

Return the number of non-overlapping occurrences of substring sub in

string S[start:end]. Optional arguments start and end are

interpreted as in slice notation.

S.find(sub[,i]) -> int

Return the lowest index in S (starting at S[i], if i is given) where the

string sub is found or -1 if sub does not occur in S.

S.isalpha() --> bool

Return True if and only if all characters in S are alphabetic

and there is at least one character in S.

S.isdigit() --> bool

Return True if and only if all characters in S are digits

and there is at least one character in S.

S.islower() --> bool

Return True if and only if all cased characters in S are lowercase

and there is at least one cased character in S.

S.isupper() --> bool

Return True if and only if all cased characters in S are uppercase

and there is at least one cased character in S.

S.lower() --> str

Return a copy of S converted to lowercase.

S.replace(old, new) -> str

Return a copy of string S with all occurrences of the string old replaced

with the string new.

S.split([sep]) -> list of str

Return a list of the words in S, using string sep as the separator and

any whitespace string if sep is not specified.

S.startswith(prefix) -> bool

Return True if S starts with the specified prefix and False otherwise.

S.strip() --> str

Return a copy of S with leading and trailing whitespace removed.

S.upper() --> str

Return a copy of S converted to uppercase.

Total Pages = 16 Page 15 cont’d. . .

CSC A08 Fall 2015

list:

append(...)

L.append(object) -- append object to end

count(...)

L.count(value) -> integer -- return number of occurrences of value

index(...)

L.index(value, [start, [stop]]) -> integer -- return first index of value.

Raises ValueError if the value is not present.

insert(...)

L.insert(index, object) -- insert object before index

pop(...)

L.pop([index]) -> item -- remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove(...)

L.remove(value) -- remove first occurrence of value.

Raises ValueError if the value is not present.

math:

ceil(...)

Return the ceiling of x as an int.

This is the smallest integral value >= x.

cos(...)

Return the cosine of x (measured in radians).

floor(...)

Return the floor of x as an int.

This is the largest integral value <= x.

pow(...)

Return x**y (x to the power of y).

sin(...)

Return the sine of x (measured in radians).

sqrt(...)

Return the square root of x.

tan(...)

Return the tangent of x (measured in radians).

set:

pop(...)

Remove and return an arbitrary set element.

Raises KeyError if the set is empty.

dict:

keys(...)

D.keys() -> a set-like object containing all of D's keys

get(...)

D.get(k[,d]) -> returns D[k] if k is in D, otherwise returns d. d defaults to None.

object:

__init__(...)

x.__init__(...) initializes x; called automatically when a new object is created

__str__(...)

x.__str__() <==> str(x)

other:

x // y = integer divide x by y (i.e., how many times does x divide evenly into y). 5 // 3 = 1

x % y = the remainder when x is integer divided by y. 5 % 3 = 2

Page 16 of 16 End of Examination

