
CSCA08 Exercise 7
Due: November 12, 2017. 5:00pm

Pre-Run: November 10, 2017. 5:00pm

This time we’re working with dictionaries. In fact, we’re working with a specific dictionary in all three
functions: This dictionary maps a username to a list of last name, first name, e-mail, age and gender. We
will build the dictionary from a file, update the dictionary, and then select elements from the dictionary that
meet a certain criteria.

Building the Dictionary

Write a function named create dict, that takes one parameter, an open file handle (remember ex5, this is
an open file handle, not the name of a file), and returns a dictionary that maps a string to a list of strings
and ints. In particular, the type contract of this function will be:
(io.TextIOWrapper) -> dict of {str: [str, str, str, int, str]}
This function will read a file formatted like the provided ex7 data.txt. That is, each line will have a
username, first name, last name, age, gender (either M, F or X) and an e-mail address, all separated by
spaces. The function will insert each person’s information into a dictionary with their username as the key,
and the value being a list of [last name, first name, e-mail, age, gender]. When the entire file has
been processed, it will then return the dictionary.

Changing the Dictionary

Write a function called update field, that takes 4 parameters: A dictionary in the format created by
the previous function, a username, the name of a field1 (One of: ’LAST’, ’FIRST’, ’E-MAIL’, ’AGE’ or
’GENDER’2), and a new value to replace the current value of the specified field. The function should not
return anything, but instead mutate the dictionary as appropriate.

An example call of the function is below:

>>> my_dict = {'sclause':['Clause', 'Santa', 'santa@christmas.np', 450, 'M']}

>>> update_field(my_dict, 'sclause', 'AGE', 999)

>>> my_dict == {'sclause': ['Clause', 'Santa', 'santa@christmas.np', 999, 'M']}

True

BONUS: Selecting Elements

Write a function called select that takes 4 parameters, a dictionary formatted as in the previous questions,
the name of a field to select, the name of a field to check 3, and a value to check for.

The function should return a set of all the data elements from the selected fields of people whose checked
fields were equal to the checked value. That was a bit of a mouthful, so let’s see an example to make it
clearer. We want to select the e-mail of anyone whose gender is equal to M:

>>> my_dict = {'sclause':['Clause', 'Santa', 'santa@christmas.np', 450, 'M'],

'ebunny':['Bunny', 'Easter', 'bunny@easter.hop', 99, 'M'],

'tfairy':['Fairy', 'Tooth', 'fairy@money4teeth.net', 0, 'F']}

>>> select(my_dict, 'E-MAIL', 'GENDER', 'M')

{'santa@christmas.np', 'bunny@easter.hop'}

1You may want to write a helper function to get the index given the field name, particularly if you’re going to try the bonus
question

2Make sure you tell the user that these are the options you’re expecting. As long as you inform them, your code doesn’t
have to work with other inputs, though it still shouldn’t crash.

3field names and rules are the same as in the previous function

1


