
CSCA08 Exercise 5
Due: October 29, 2017. 5:00pm

Pre-Run: October 27, 2017. 5:00pm

This week’s exercise will revolve around reading files. Since you don’t know the names or locations of the
files, we will open/close them for you, and just pass in the file handle to your functions. As usual, your
functions should all be in a file called ex5.py, that doesn’t use input, import or print. Since you really
have no way of using our .test files to test file I/O, you don’t need to submit your testing files. But that
doesn’t mean you shouldn’t be testing, just that we won’t be evaluating your testing this time.

Finding Function Names

Write a function called function names that takes as a parameter a file handle open for reading, and
returns a list1 of all of the function names in that file. Remember that function definitions have a very
specific format: def function name(parameters). You can assume that all functions are exactly correctly
formatted according to PEP-8 standards. e.g., 1 space after the def, no space before the (.

Calling function names on ex4.py would (hopefully) return the result:

['insert', 'up_to_first', 'cut_list']

Hint: look through the str methods, some of them will be quite helpful, such as startswith or find

Justified

Write a function called justified that takes as a parameter a file handle open for reading, and returns a
boolean which is true if and only if every line in that file is left-justified (the first character is something
other than a space2). If any lines start with a space, the program should return False.

Challenge: Ensure that your code works efficiently on a very long file with one of the first lines being
non-left-justified

Bonus: Section Average

Write a function called section average3 that takes two parameters: The first parameter is an open file of
midterm marks (no, they’re not real marks). Each line represents a single student and consists of a student
number, a name, a section code and a midterm grade, all separated by whitespace. An example file has been
uploaded as ex5 grade file.txt. The second parameter is a section code. Return the average midterm
mark for all students in that section, or return None if the section code does not appear in the marks file for
any students. As before, this will be run through the auto-marker, but the marks won’t count. It’s just for
your own enjoyment.

Hint: the split method might be particularly useful here.
Hint: Notice that not everyone has the same number of names, so we can’t just assume that the mark and
section code will be at a particular index... at least not reading from the left.

1The type contract for this would be (io.TextIOWrapper) -> list of str
2blank lines count as left justified
3As with previous bonus questions, this question will be marked for your own information, but your final mark for the

exercise will be solely decided by the previous 2 questions.

1


