
CSCA08 Assignment 1
Due: November 12, 2017. 11:55pm

Introduction

In this assignment, we will be working with strings and lists, combining iteration and selection and dealing
with mutability. The goal of this assignment is to ensure that you’re comfortable combining all of the
elements we have been learning in class, and using multiple tools together in a single function. Once again,
your mark will be partially based on building working code, but more than half of your mark will come from
documentation and design.

Important Notes

For this assignment, you can use any material covered in class up to and including file i/o. That means
you can use loops and selection, as well as any built-in string or list methods that do not require importing.
Remember to follow the instructions carefully, and that nowhere in your code should you use import or
print statements.

One thing to keep in mind in this assignment is that genes can be very long. So it will be important that
your code be efficient. You don’t want to loop over a sequence more times than necessary, and you don’t
want to create copies of data if it can be avoided.

DNA Sequencing

Now that we have a good understanding of what a gene looks like, we will be working on ways in which
genes can be combined and manipulated. Genes are composed of a sequence of nucleotides: adenine (A),
guanine (G), cytosine (C) and thymine (T). And once again, we will represent each of these genes by the
first letter of their name.

Genes can be paired together by allowing the nucleotides from one gene to pair-bond with the nucleotides
from another. Interestingly, guanine will pair with cytosine, and adenine will pair with thymine, but other
combinations will not pair. So if we have a gene with the nucleotide sequence TCAG1, it would pair with
either AGTC or CTGA (genes can pair in either direction).

It’s also possible for a gene to partially pair with itself, in a process we will call zipping. This happens
when the nucleotides at either end of a gene form a pair bond, which may in turn allow the next nucleotides
in from those genes to bond. This process continues until a pair of nucleotides do not form a bond. For
example, the gene AGTCTCGCT could form a zip with the first adenine pairing with the last thymine, then the
guanine at index 1 bonding with the cytosine at index -2. The next pair inwards would be a thymine and a
guanine, which don’t pair. So this gene would stop there and only form a zip of length 2.

Scientists are able to splice genes: taking a nucleotide sequence from one gene and replacing it with a
nucleotide sequence from another. In order to do this, scientists need to find anchor sequences that are the
same in both genes, and they can then swap everything in between these anchor sequences2. For example,
if they wanted to splice the gene codeACATGTGACGT into the gene TCAGTTACTTGA, using the anchor
sequence CA to start the splice and AC to end the splice. They would extract CATGTGAC from the first gene,
and use it to replace the sequence CAGTTAC from the second gene, resulting in the new gene TCATGTGACTTGA

1for this assignment, we will ignore the AGT starting codon, and just focus on the rest of the gene
2Once again, we’re straying from how things actually work in real biology in order to make the problem better fit our needs.

This isn’t quite how splicing works in the real world, but for the purposes of this assignment, we’ll pretend

1



It’s often important to find a specific pattern within a gene. For this purpose, scientists create a mask.
Masks pair with parts of genes, but do not need to pair with the entire gene. The pairing works in the same
manner as normal gene pairing, but with a few interesting additions.

• Scientists can create special nucleotides in masks called multis that can mimic the bonding behaviour
of multiple nucleotides. For example, we could create a multi that can act like adenine, or like guanine
(i.e., it will bond with either thymine or cytosine). We will denote these multis in our gene sequences
by listing the nucleotides with which they can mimic in brackets. So for example, a mask consisting
of adenine, the mimic just mentioned, and thymine would be written as A[AG]T.

• It’s also possible to create a nucleotide that will pair with any other nucleotide. We call these special
nucleotides stars, and we will denote them in our gene sequence with the star character: *.

• In order to simplify the encoding of the masks, repeated sequences of nucleotides are denoted by the
nucleotide followed by a number, so for example CCCAGGGGTT would be represented as C3AG4T2.

As an example, the mask: [AG]C3* would pair with any sequence starting with either T or C, followed by
three G, followed by any other nucleotide.

Your Tasks

For this assignment, you will be required to build the following functions:

• pair genes: Takes in two strings representing genes, and returns True iff the two genes can pair.

• zip length: Takes in a string representing a gene, and returns the maximum number of nucleotide
pairs that this gene can zip. For example, if the first 12 nucleotides can zip with the last 12 nucleotides,
this function would return 12.

• splice gene: Takes 2 list representations of genes (each element of the list will contain a single
character string representing one nucleotide) which we will call source and destination (in that
order) along with two strings representing the start and end anchor strings. Splices the subsequence of
source between the anchor strings into destination between the anchor strings. If an anchor occurs
more than once in a string, the first shortest sequence should be used. If the anchors do not appear in
order in both strings, no changes should be made to the genes.

• match mask: Takes in a string representation of a gene and a mask and returns the index of the first
nucleotide in the sequence that is matched by the mask. (If the mask matches multiple sequences,
return the one with the lowest index) or -1 if the mask does not match anywhere in the gene.

• process gene file: Takes in a file handle for a file containing one gene per line, a string representing
a gene and a string representing a mask. Returns a tuple (p, m, z) where p = the first gene that can
pair with the input gene string, m = the first gene that matches the mask, and z = the longest gene
zip found up in any gene up to and including the point where both p and m were found. If no genes
match the given gene or mask, -1 is returned in place of p or m.

Marking

What to Submit

Submit a1.py and a1.test on MarkUs. Your files must be named exactly as given here (check that MarkUs
says you have submitted all required files after you’re done submitting).

2


