Izmaylov Research Group
Izmaylov Research Group
Research
The main efforts of our group are directed toward developing electronic structure and quantum dynamics methods to obtain detailed understanding of processes involving simultaneous changes in electronic and nuclear states. Such processes constitute crucial steps in many areas of fundamental and technological importance: solar energy conversion, UV-light DNA damage and repair, operation of MRI contrast agents, catalysis at surfaces, and general surface chemistry.
Overview
Ongoing projects
Representative publications:
1)I. G. Ryabinkin and A. F. Izmaylov, Geometric phase effects in dynamics near conical intersections: Symmetry breaking and spatial localization, Phys. Rev. Lett., 111, 220406 (2013)
2)I. G. Ryabinkin, L. Joubert-Doriol, and A. F. Izmaylov When do we need to account for the geometric phase in excited state dynamics? J. Chem. Phys. 140, 214116 (2014)
3)R. Gherib, I. G. Ryabinkin, and A. F. Izmaylov Why do mixed quantum-classical methods describe short-time dynamics through conical intersections so well? Analysis of geometric phase effects, J. Chem. Theory Comp., 11, 1375 (2015)
4)A. F. Izmaylov, J. Li, and L. Joubert-Doriol, Diabatic definition of geometric phase effects, J. Chem. Theory Comp. 12, 5278 (2016)
5)L. Joubert-Doriol, J. Sivasubramanium, I. G. Ryabinkin, and A. F. Izmaylov, Topologically correct quantum nonadiabatic formalism for on-the-fly dynamics, J. Phys. Chem. Lett. 8, 452 (2017)
YouTube videos:
1. Geometric phase effects in non-adiabatic dynamics
2. Method development for energy and charge transfer in organic molecules
Representative publications:
1)A. F. Izmaylov, Perturbative Wave-packet Spawning Procedure for Non-adiabatic Dynamics in Diabatic Representation, J. Chem. Phys., 138, 104115 (2013)
2)L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov Non-stochastic matrix Schrödinger equation for open systems, J. Chem. Phys. 141, 234112 (2014)
3)J. Nagesh, A. F. Izmaylov, and P. Brumer An efficient implementation of the localized operator partitioning method for electronic energy transfer, J. Chem. Phys. 142, 084114 (2015)
4)J. Nagesh, M. J. Frisch, P. Brumer, and A. F. Izmaylov, Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism, J. Chem. Phys. 145, 244111 (2016)
5)A. F. Izmaylov and L. Joubert-Doriol, Quantum Nonadiabatic Cloning of Entangled Coherent States, J. Phys. Chem. Lett. 8, 1793 (2017)
4. DNA photo-damage repair by photolyases
Representative publications:
1)J. S. Endicott, L. Joubert-Doriol, and A. F. Izmaylov A perturbative formalism for electronic transitions through conical intersections in a fully quadratic vibronic model, J. Chem. Phys. 141, 034104 (2014)
2)L. Joubert-Doriol and A. F. Izmaylov Problem-free time-dependent variational principle for open systems, J. Chem. Phys. 142, 134107 (2015)
3)L. Joubert-Doriol, T. Domratcheva, M. Olivucci, and A. F. Izmaylov, Nuclear dynamics investigation of the initial electron transfer in the cyclobutane pyrimidine dimer lesion repair process by photolyases, submitted
Representative publications:
1)A. Klinkova, P.V. Cherepanov, I. G. Ryabinkin, M. Ho, M. Ashokkumar, A. F. Izmaylov, D. V. Andreeva, E. Kumacheva, Shape-dependent Interactions of Palladium Nanocrystals with Hydrogen, Small, 12, 2450 (2016)
2)I. G. Ryabinkin and A. F. Izmaylov, Mixed quantum-classical dynamics using collective electronic variables: A better alternative to electronic friction theories, J. Phys. Chem. Lett. 8, 440 (2017)
3. Modeling Chemical Reactions on Metallic Surfaces and Nanostructures