"CLEANING UP OUR MESS: REMEDIATION OF TERRESTRIAL AND AQUATIC ENVIRONMENTS"
(EESD15H3-F L01)

Instructor: Dr. Silvija Stefanovic
Lecture: Friday 12–3pm; BV363
Office: SW-648
Office hours: Friday 11-12pm
Email: silvija.stefanovic@utoronto.ca
Phone: 416-208-4873

Intent of the course:
This course consists of a study of the ways in which hazardous organic and inorganic materials can be removed or attenuated in natural systems. The theory behind various technologies, with an emphasis on bioremediation techniques and their success in practice. An introduction to the unique challenges associated with the remediation of surface and ground water environments, soils, marine systems, and contaminated sediments.

Prerequisite: Students must have successfully completed BGYA01H & BGYA02H & CHMA10H & CHMA11H & PHYA10H or PHYA11H

Lecture notes:
The lecture slides will be posted in *.pdf format on the Blackboard. You will require Adobe Reader to open the files (available free of charge at www.adobe.com).

Course email policy:
Email is not an effective way of teaching and email inquiries regarding course materials will not be answered. Dr. Stefanovic will be available during designated office hours to answer questions regarding course material. If you have questions, then please see instructor during office hours – this time is for you so please do not hesitate to use it.

Grading:
Term assignments (2): 20% (2x10%)
Seminar: 10%
Final Project Report: 15%
Final Project Presentation: 10%
Participation: 5%
Final Exam: 40%

Assignments:
You will have calculation problems to solve for each of two group assignments. You will be able to access the problem sheets on the Blackboard at the TENTATIVE times detailed below. More details on the assignments will be circulated during the term.

<table>
<thead>
<tr>
<th>Topic</th>
<th>On the Blackboard</th>
<th>Submission Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment #1</td>
<td>Sep. 19th</td>
<td>Oct. 3rd</td>
</tr>
<tr>
<td>Assignment #2</td>
<td>Nov. 7th</td>
<td>Nov. 21st</td>
</tr>
</tbody>
</table>
Seminar:
You will be assigned a specific type of contaminants and you will need to present its chemistry, sources, fate, and toxicology during short in class presentation (15min). This is a group seminar with 2-3 students per group. Topics will be given during the first lecture. One page Summery plus references to be sent to instructor after the presentation. Also after the presentations the rest of the students will need to submit hand written summaries for the participation mark. More information will be circulated in the class.

Final Project/Presentation
You will be assigned a real remediated site to critically review its problem circumstances such as site history, types and sources of contaminants, contaminant migration pathways, human and ecological receptors, natural and demographic site conditions and completed remediation techniques. This is a group project with 2-3 students per group (not necessarily the same students as for Seminar). Topics will be assigned during the first lecture.
At the end of the term you will present your findings during 20 min long in class presentation. The rest of the class will need to submit hand written summaries for the participation mark.
The hard copy of the final project report is due at the last lecture by 3pm. The length is limited to maximum 8 pages.

Final Exam:
The 2 hour final examination is worth 40% of the final grade for the course. It will be a combination of fill-in-the-blanks, written (short essay) answers and calculations/problem solving questions. The final exam will draw from lectures and student’s presentations and includes lecture notes and any material presented in the classroom.
Information from the textbook and other resources not directly covered in class will not be tested on exams. More details about the exams will follow.

Other Course policies:
Late assignments will not be accepted and assigned a grade of zero. Extensions will be granted ONLY with medical note or under exceptional circumstances. Your instructor must be informed about that immediately.
Plagiarism will not be tolerated. Each student/group is expected to submit individual work for grading. It is an academic offense to plagiarize and those who do, will be subjected to University procedures (see the University calendar).

Lecture topics:
1. Introduction, ground rules, expectations and course structure.
 What is contaminated site? Introduction to soil and groundwater remediation.
 Sep. 5th
2. Basic soil and groundwater properties (review)
 Sep. 12th
3. Environmental site assessment; Investigative methods; Natural attenuation. Assignment #1
 Sep. 19th
4. Student’s presentations (Types of Contaminants)
 Sep. 26th
5. Student’s presentations (Types of Contaminants)
 Oct. 3rd
6. Selection of remediation procedure; Classification of techniques: Ex situ and In situ technologies;
 Physical methods of trapping pollutant: Encapsulation and alveolation, Stabilization and enervation,
 Hydraulic trap
 Oct. 10th
7. READING WEEK
 Oct. 17th
8. Physical methods involving removal of pollutants: Excavation, Pumping water, Pumping-skimming,
 Washing and entrainment by a liquid. In situ venting, Soil vapour extraction (SVE), Air striping
 Oct. 24th
 Chemical Methods: On site Washing, Oxidation, Reduction.
 Oct. 31st
10. Chemical Methods: Dechlorination, Electrochemical techniques;
 Thermal methods: Incineration, Thermal desorption, Pyrolysis, Vitrification. Assignment #2
 Nov. 7th
11. Biological method: Biodegradation in pile, Composting, Land farming, Bioventing and biosparging
 Biobaroriers and biological screens.
 Phytoremediation; Lagooning.
12. Student's presentations (Final Project) Nov. 14th
13. Student’s presentations (Final Project); Final Review. Nov. 21st
 Nov. 28th

I will follow this schedule as closely as possible, but things being what they are, some of these topics may
"overflow" over into other time slots.

Associated Readings in Textbook:
Week 1: Lecture notes
Week 2: Lecture notes, Chapter 1&4
Week 3: Lecture notes, Chapter 5
Week 4: Handouts, Chapter 2&3
Week 5: Handouts, Chapter 2&3
Week 6: Lecture notes, Chapter 6&10
Week 7: Reading week
Week 8: Lecture notes
Week 9: Lecture notes, Chapter 12
Week 10: Lecture notes, Chapter 8&11
Week 11: Lecture notes Chapter 7&9