Rationale:

This course will provide you with a systematic review of the evolution of environments on planet Earth over the last 4500 million years, and in particular, the geology and history of the North American continent and the Canadian landmass.

The latter part of the course touches on how knowledge of geology (now termed geoscience by many) is fundamental to environmental investigations relating to the disposal of wastes, managing contaminants, finding adequate water supplies, safeguarding natural habitat, dealing with urban development and flood waters, energy sources, earthquakes etc. We will touch on how geophysics is used in environmental geoscience investigations.

In this regard I have included lectures on applied real world use of geosciences. Many of you will wish to pursue a career in Ontario in environmental science perhaps working as part of a team for an environmental consulting company or in a government environmental agency. At the moment there is a great demand for geoscientists in western Canada dealing with the environmental consequences of energy extraction. These are good times for geoscientists and there are more jobs than people. If you like the outdoors and want to pursue a career where there are great opportunities for travel and fieldwork, geoscience could be for you.

Overview:

Planet Earth is at least 4500 million years old (4.5 billion or abbreviated to 4.5 Ga meaning giga annum) and a direct geological record (i.e., rocks!) exists for at least the last 3.8 billion years in the form of volcanic, metamorphic and sedimentary rocks. The oldest fossils of ancient life forms found on planet Earth (simple cyanobacteria) are thought to be 3.46 billion years old.

The changing dynamics of convection deep within the Earth’s mantle and associated supercontinent assembly and breakup along with meteorite impacts, are now recognized as the major controls on development of the planet’s atmosphere, oceans, biology, climate and geochemical cycles. This course reviews this long history and the methods and techniques used by geologists to identify ancient environments and the nature of the fossil record. We will trace the beginnings of plate tectonics on early Earth and the evolution of the modern continents. The effects of climate change on the Canadian landmass, especially glaciations of the last few million years will be reviewed.

Instructor: Ms. Lisa Tutty BSc (hon) MSc PhD candidate in Geology

Office Hours: Monday 10:30 – 11:30 and Wednesday 12:30 – 1:30 in portable 103 room TBA (this is a shared office; I am only there during my scheduled office hours). I am also available after lecture.
EESB15 Earth History Autumn 2009

Contact information: please use the discussion board on Blackboard (BB) for all course related communication. You may discuss matters of a *personal* nature (e.g. illness) during the office hours or by email (tutty@utsc.utoronto.ca). I like being able to discuss course related questions/concerns with students on BB because it is interactive (we can have a back and forth discussion) and because your fellow students may have been wondering about the same things but were afraid to ask. I am here to help you do well in this class; please don’t be shy about asking me questions.

Teaching assistant: Ms. Shannon Carto BSc (hon) MSc PhD candidate in Geology

Contact information: scarto@utsc.utoronto.ca

Office Hours: Due-date driven, to be announced on Blackboard.

Course objectives:

1. **SKILLS:** All geoscientists must present their work to other geoscientists, to management and/or to the public. Much of the time this is done in the format of a written report. Through this course you will gain valuable experience in **presenting** your work in a report format. A further skill to be mastered during your undergraduate education is **time management**, as the assignment has a ‘staged hand-in’ you will learn the steps to completing an assignment well and on time.

2. **CONTENT:** You will demonstrate your **knowledge** of course content on brief weekly homework/quiz assignments as well as on the final examination.

Expectations:

1. Students and the instructor will treat one another with *respect* at all times – this includes during lecture, on the discussion board, by email and during office hours.

2. Students will take the *initiative* to learn the material; in all university courses you must try to question and apply the material and not simply absorb it.

3. Students will continue to work on their time management and appropriate study *skills*.

4. Students will regularly check the Blackboard site (http://portal.utoronto.ca) for important updates, lecture notes, recorded lectures, discussion board, assignment information, etc.

Required course text:

EESB15 Earth History Autumn 2009

Marking Scheme:

- Term Assignment (staged hand in) 40%
- Final Examination 35%
- Weekly mini-homework/quiz (BB) 15%
- Field Trip (mandatory for all students) 10%

Academic Integrity Statement:

Academic integrity is one of the cornerstones of the University of Toronto. It is critically important both to maintain our community which honours the values of honesty, trust, respect, fairness and responsibility and to protect you, the students within this community, and the value of the degree towards which you are all working so diligently. According to Section B of the University of Toronto's Code of Behaviour on Academic Matters 53 which all students are expected to know and respect, it is an offence for students:

- To use someone else's ideas or words in their own work without acknowledging that those ideas/words are not their own with a citation and quotation marks, i.e. to commit plagiarism.
- To include false, misleading or concocted citations in their work.
- To obtain unauthorized assistance on any assignment.
- To provide unauthorized assistance to another student. This includes showing another student completed work.
- To submit their own work for credit in more than one course without the permission of the instructor.
- To falsify or alter any documentation required by the University. This includes, but is not limited to, doctor's notes.
- To use or possess an unauthorized aid in any test or exam.

There are other offences covered under the Code, but these are by far the most common. Please respect these rules and the values which they protect. It is your responsibility to ensure that your work maintains academic integrity. If you have any concerns please see the instructor before a potential problem arises. Please familiarize yourself with the Code (http://www.governingcouncil.utoronto.ca/policies/behaveac.htm) and also with the handout “How not to plagiarize”, available in the Course Documents section on BB. At the University of Toronto academic dishonesty can result in a mark of zero, a reduction in final grades, denial of privileges, a monetary fine, failure in the course, suspension, permanent record, a recalling of degrees/diplomas and certificates, or expulsion.

Procedures to be followed for missed term work:

If you know that you will miss a deadline then please let me know in advance as we might be able to work something out. Should you miss a deadline for any term work you will receive a grade of zero if you do not follow the following procedure. Within one
week of the missed deadline you must submit a completed University of Toronto medical certificate (available on BB) as well as a letter from you describing when you fell ill, how it prevented you from making the deadline and when you returned to school as well as your name and student number and the course code. Submit the certificate and the letter to Ms. Pat Woodcock in SW 644; Mon-Fri 9-5 (lunch 1-2) woodcock@utsc.utoronto.ca. [Please note, due to the H1N1 pandemic there are separate rules for flu-like symptoms: “Since we are encouraging you to stay at home if you are unwell, the university has developed guidelines around the temporary suspension of the need for a doctor’s note or medical certificate in relation to flu-related absences. In order to receive academic accommodation, students will need to record all flu-related absences through a new tool on the Student Web Service of ROSI (http://www.rosi.utoronto.ca).”]

Accessibility Needs: The University of Toronto is committed to accessibility. If you require accommodations for a disability, or have any accessibility concerns about the course, the classroom or course materials, please contact Accessibility Services as soon as possible: UTSC campus AccessAbility http://www.utsc.utoronto.ca/~ability/ or St. George Campus DisAbility disability.services@utoronto.ca or http://studentlife.utoronto.ca/accessibility.

Final Examination: The final examination is cumulative and will be scheduled by the University and held during the December examination period. The exam will contain multiple choice, true and false and essay type (short/long answer) questions.

Course Schedule:

Sept 14 & 21 Course overview; expectations and objectives: Beginnings of Planet Earth, evolution of the lithosphere and plate tectonics. Readings: 1&2 in Canada Rocks.

Sept 28 Geological evolution of the Canadian Shield until 1000 million. Readings: 3&4 in Canada Rocks. TOPIC CHOICE (2.5%) DUE ON BB

Oct 5 600 Ma to 200 Ma: Giant seas flood the Shield and the making of central and eastern Canada. Readings: 5&6 in Canada Rocks. ANNOTATED (2.5%) DUE ON BB

Oct 12 University closed for Thanksgiving holiday, no lecture.

Oct 19 The making of western Canada (200-100 million years). Readings: 8 in Canada Rocks. OUTLINE (7.5%) DUE ON BB

Oct 26 Field trip!

Nov 2 Cool times: the last 55 million years. The ice sheets appear over Canada and change the landscape. Readings: 9 in Canada Rocks. DRAFT (5%) DUE ON BB

Nov 9 Rocky resources and mining in Canada. Readings: 10 in Canada Rocks. PEER REVIEWED/REVISED DRAFTS (7.5%) DUE ON BB

Nov 23 “Using geophysical techniques to map fish habitat in the Great Lakes” and “Graduate studies in geoscience: what you can do as an undergraduate student to prepare”. PROJECTS (15%) DUE ON BB

Nov 30 Exam revision session